OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 14 — Jul. 7, 2008
  • pp: 10580–10595

Theory for bowtie plasmonic nanolasers

Shu-Wei Chang, Chi-Yu Adrian Ni, and Shun Lien Chuang  »View Author Affiliations

Optics Express, Vol. 16, Issue 14, pp. 10580-10595 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (320 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a fundamental formulation for electrically-pumped plasmonic semiconductor nanolasers based on a metallic bowtie structure. Because of the negative dielectric constant of the metal at optical frequencies, the effective modal volume of the plasmonic mode can be compressed to the nanometer scale. In addition, the curvature effect of the bowtie tips provides additional field enhancement in the bowtie gap and further reduces the modal volume. With this small modal volume, the required volume of the active region is reduced correspondingly, which significantly decreases the threshold current. The huge field enhancement due to the small modal volume at the gap of the bowtie may overcome the material and radiation losses by increasing both the spontaneous and stimulated emission rates, and it makes the lasing action possible.

© 2008 Optical Society of America

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: April 18, 2008
Revised Manuscript: June 27, 2008
Manuscript Accepted: June 27, 2008
Published: July 1, 2008

Shu-Wei Chang, Chi-Yu Adrian Ni, and Shun-Lien Chuang, "Theory for bowtie plasmonic nanolasers," Opt. Express 16, 10580-10595 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Haus and C. Shank, "Antisymmetric taper of distributed feedback lasers," IEEE J. Quantum Electron. 12, 532-539 (1976). [CrossRef]
  2. H. Soda, Y. Kotaki, H. Sudo, H. Ishikawa, S. Yamakoshi, and H. Imai, "Stability in single longitudinal mode operation in GaInAsP/InP phase-adjusted DFB lasers," IEEE J. Quantum Electron. 23, 804-814 (1987). [CrossRef]
  3. E. Yablonovitch, "Photonic band-gap structures," J. Opt. Soc. Am. B 10, 283-295 (1993). [CrossRef]
  4. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O�??Brien, P. D. Dapkus, and I. I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  5. S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000). [CrossRef] [PubMed]
  6. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004). [CrossRef] [PubMed]
  7. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992). [CrossRef]
  8. T. Baba, "Photonic crystals and microdisk cavities based on GaInAsP-InP system," IEEE J. Sel. Top. Quantum Electron. 3, 808-830 (1997). [CrossRef]
  9. M. Fujita, A. Sakai, and T. Baba, "Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor," IEEE J. Sel. Top. Quantum Electron. 5, 673-681 (1999). [CrossRef]
  10. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  11. C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser with plasmon-enhanced waveguide operating at 8.4 �??m wavelength," Appl. Phys. Lett. 66, 3242-3244 (1995). [CrossRef]
  12. M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, "Low-threshold terahertz quantum-cascade lasers," Appl. Phys. Lett. 81, 1381-1383 (2002). [CrossRef]
  13. B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, "Terahertz quantum-cascade laser at ? �?? 100 ?m using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003). [CrossRef]
  14. S. Kumar, B. S. Williams, S. Kohen, Q. Hu, and J. L. Reno, "Continuous-wave operation of terahertz quantumcascade lasers above liquid-nitrogen temperature," Appl. Phys. Lett. 84, 2494-2496 (2004). [CrossRef]
  15. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006). [CrossRef]
  16. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F.W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photonics 1, 589-594 (2007). [CrossRef]
  17. E. Yablonovitch, T. J. Gmitter, and R. Bhat, "Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructures," Phys. Rev. Lett. 61, 2546-2549 (1988). [CrossRef] [PubMed]
  18. J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998). [CrossRef]
  19. J. M. Gerard and B. Gayral, "Strong Purcell effect for InAs quantum boxes in three-dimensionalsolid-state microcavities," J. Lightwave Technol. 17, 2089-2095 (1999). [CrossRef]
  20. G. S. Solomon, M. Pelton, and Y. Yamamoto, "Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity," Phys. Rev. Lett. 86, 3903-3906 (2001). [CrossRef] [PubMed]
  21. D. J. Bergman and M. I. Stockman, "Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems," Phys. Rev. Lett. 90, 027402 (2003). [CrossRef] [PubMed]
  22. I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O�??Reilly, "Dipole nanolaser," Phys. Rev. A 71, 063812 (2005). [CrossRef]
  23. J. N. Farahani, D. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: a tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005). [CrossRef] [PubMed]
  24. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, "Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles," Phys. Rev. B 72, 165409 (2005). [CrossRef]
  25. E. M. Lifshitz, L. D. Landau, and L. P. Pitaevskii, Electrodynamics of Continuous Media (Elsevier Butterworth-Heinemann, 1984).
  26. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
  27. E. Feigenbaum and M. Orenstein, "Optical 3D cavity modes below the diffraction-limit using slow-wave surfaceplasmon-polaritons," Opt. Express 15, 2607-2612 (2007). [CrossRef] [PubMed]
  28. G. Bjork, A. Karlsson, and Y. Yamamoto, "Definition of a laser threshold," Phys. Rev. A 50, 1675-1680 (1994). [CrossRef] [PubMed]
  29. P. Borri,W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, "Ultralong dephasing time in InGaAs quantum dots," Phys. Rev. Lett. 87, 157401 (2001). [CrossRef] [PubMed]
  30. M. Bayer and A. Forchel, "Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots," Phys. Rev. B 65, R041308 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited