OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 14 — Jul. 7, 2008
  • pp: 10641–10649

Surface plasmon polariton detection discriminating the polarization reversal image dipole effects

K. G. Lee, K. J. Ahn, H. W. Kihm, J. S. Ahn, T. K. Kim, S. Hong, Z. H. Kim, and D. S. Kim  »View Author Affiliations

Optics Express, Vol. 16, Issue 14, pp. 10641-10649 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (455 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Image dipole effects are highly dependent on the polarization direction, constructive (destructive) interference between real and image dipoles for the vertically (horizontally) aligned one in the vicinity of metal surfaces, respectively. This polarization-reversal of the image dipole effects is quantitatively investigated by using a gold nanoparticle functionalized tip as a local dipolar scatterer and a propagating surface plasmon polariton as an excitation source of dipoles. The polarization-resolved detection technique is applied to separate the radiations of the vertical and the horizontal dipoles from each other. In our study, the image dipole effects on the far-field detected signals are fully explained by the Fabry-Perot like interference between the radiations from the real and the image dipoles, and by considering the finite size effects of the gold nanoparticle.

© 2008 Optical Society of America

OCIS Codes
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(240.6680) Optics at surfaces : Surface plasmons
(240.5440) Optics at surfaces : Polarization-selective devices

ToC Category:
Optics at Surfaces

Original Manuscript: May 9, 2008
Revised Manuscript: June 20, 2008
Manuscript Accepted: June 23, 2008
Published: July 1, 2008

K. G. Lee, K. J. Ahn, H. W. Kihm, J. S. Ahn, T. K. Kim, S. Hong, Z. H. Kim, and D. S. Kim, "Surface plasmon polariton detection discriminating the polarization reversal image dipole effects," Opt. Express 16, 10641-10649 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, and R. Wolfe, "Polarization contrast in near-field scanning optical microscopy," Appl. Opt. 31,4563 (1992). http://ao.osa.org/abstract.cfm?id=40089 [CrossRef] [PubMed]
  2. F. Zenhausern, M. P. O�??Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000065000013001623000001&idtype=cvips&gifs=yes [CrossRef]
  3. Y. Inouye and S. Kawata, "Near-field scanning optical microscope with a metallic probe tip," Opt. Lett. 19, 159-161 (1994). http://ol.osa.org/abstract.cfm?id=12150 [CrossRef] [PubMed]
  4. F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution," Science 269,1083-1085 (1995). http://www.sciencemag.org/cgi/search?volume=269&firstpage=1083&search_citation-search.x=26&search_citation-search.y=5 [CrossRef] [PubMed]
  5. B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182,321-328 (2000). [CrossRef]
  6. R. Hillenbrand and F. Keilmann, "Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy," Appl. Phys. Lett. 80, 25-27 (2002). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000080000001000025000001&idtype=cvips&gifs=yes [CrossRef]
  7. J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, "Tip-Enhanced Fluorescence Microscopy at 10 Nanometer Resolution," Phys. Rev. Lett. 93, 180801 (2004). http://prola.aps.org/abstract/PRL/v93/i18/e180801 [CrossRef] [PubMed]
  8. B. Knoll and F. Keilmann, "Infrared conductivity mapping for nanoelectronics," Appl. Phys. Lett. 77, 3980-3982 (2000). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000077000024003980000001&idtype=cvips&gifs=yes [CrossRef]
  9. Z. H. Kim, S. H. Ahn, B. Liu, and S. R. Leone, "Nanometer-Scale Dielectric Imaging of Semiconductor Nanoparticles: Size-Dependent Dipolar Coupling and Contrast Reversal," Nano Lett. 7, 2258-2262 (2007). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2007/7/i08/abs/nl070753k.html [CrossRef] [PubMed]
  10. R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometer scale," Nature 418, 159-162 (2002). http://www.nature.com/nature/journal/v418/n6894/full/nature00899.html [CrossRef] [PubMed]
  11. M. B. Raschke and C. Lienau, "Apertureless near-field optical microscopy: Tip-sample coupling in elastic light scattering," Appl. Phys. Lett. 83, 5089-5091 (2003). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000083000024005089000001&idtype=cvips&gifs=yes [CrossRef]
  12. Z. H. Kim and S. R. Leone, "High-resolution apertureless near-field optical imaging using gold nanosphere probes," J. Phys. Chem. B 110, 19804-19809 (2006). http://pubs.acs.org/cgi-bin/article.cgi/jpcbfk/2006/110/i40/html/jp061398+.html [CrossRef] [PubMed]
  13. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, "Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy," Opt. Express 15, 8550-8565 (2007). [CrossRef] [PubMed]
  14. H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163-182 (1944). http://prola.aps.org/abstract/PR/v66/i7-8/p163_1 [CrossRef]
  15. K. Lieberman, S. Harush, A. Lewis, and R. Kopelman, "A Light Source Smaller Than the Optical Wavelength," Science 247, 59-61 (1990). http://www.sciencemag.org/cgi/search?volume=247&firstpage=59&search_citation-search.x=0&search_citation-search.y=0 [CrossRef] [PubMed]
  16. T. Pons, I. L. Medintz, K. E. Sapsford et al., "On the Quenching of Semiconductor Quantum Dot Photoluminescence by Proximal Gold Nanoparticles," Nano Lett. 7, 3157-3164 (2007). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2007/7/i10/abs/nl071729+.html [CrossRef] [PubMed]
  17. E. Dulkeith, M. Ringler, T. A. Klar, and J. Feldmann, "Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression," Nano Lett. 5, 585-589 (2005). http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/2005/5/i04/abs/nl0480969.html [CrossRef] [PubMed]
  18. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, and J. Feldmann, "Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects," Phys. Rev. Lett. 89, 203002 (2002). http://prola.aps.org/abstract/PRL/v89/i20/e203002 [CrossRef] [PubMed]
  19. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, "Near-Field Second-Harmonic Generation Induced by Local Field Enhancement," Phys. Rev. Lett. 90, 013903 (2003). http://prola.aps.org/abstract/PRL/v90/i1/e013903 [CrossRef] [PubMed]
  20. A. Bouhelier, M. Beversluis, and L. Novotny, "Near-field scattering of longitudinal fields," Appl. Phys. Lett. 82, 4596-4598 (2003). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000082000025004596000001&idtype=cvips&gifs=yes [CrossRef]
  21. K. G. Lee, H. W. Kihm, J. E. Kihm et al., "Vector field microscopic imaging of light," Nat. Photonics 1, 53-56 (2007). http://www.nature.com/nphoton/journal/v1/n1/abs/nphoton.2006.37.html [CrossRef]
  22. K. G. Lee, H. W. Kihm, K. J. Ahn, J. S. Ahn, Y. D. Suh, C. Lienau, and D. S. Kim, "Vector field mapping of local polarization using gold nanoparticle functionalized tips: independence of the tip shape," Opt. Express 15, 14993-15001 (2007). [CrossRef] [PubMed]
  23. L. Yin, V. K. Vlasko-Vlasov, A. Rydh et al., "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=APPLAB000085000003000467000001&idtype=cvips&gifs=yes [CrossRef]
  24. K. G. Lee, H. W. Kihm, J. E. Kihm et al., "On the concept of imaging nanoscale vector fields," Nat. Photonics 1, 243-244 (2007). http://www.nature.com/nphoton/journal/v1/n5/full/nphoton.2007.68b.html [CrossRef]
  25. H. Reather, Surface Polaritons on Smooth and Rough Surfaces and on. Gratings (Springer-Verlag:Berlin, 1988).
  26. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202, 72-76 (2001). http://www.blackwell-synergy.com/doi/full/10.1046/j.1365-2818.2001.00817.x [CrossRef] [PubMed]
  27. J. Ellis and A. Dogariu, "Optical polarimetry of random fields," Phys. Rev. Lett. 95, 203905 (2005). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000095000020203905000001&idtype=cvips&gifs=Yes [CrossRef] [PubMed]
  28. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, Inc.: New York, 1998).
  29. O. J. F. Martin, C. Girard, and A. Dereux, "Generalized Field Propagator for Electromagnetic Scattering and Light Confinement," Phys. Rev. Lett. 74, 526-529 (1995). http://prola.aps.org/abstract/PRL/v74/i4/p526_1 [CrossRef] [PubMed]
  30. C. Girard, A. Dereux, O. J. F. Martin, and M. Devel, "Generation of optical standing waves around mesoscopic surface structures: Scattering and light confinement," Phys. Rev. B 52, 2889-2898 (1995). http://prola.aps.org/abstract/PRB/v52/i4/p2889_1 [CrossRef]
  31. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press: New York, 2006).
  32. K. J. Ahn, K. G. Lee, and D. S. Kim, "Effect of dielectric interface on vector field mapping using gold nanoparticles as a local probe: Theory and experiment," Opt. Commun. 281, 4136-4141 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited