OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 14 — Jul. 7, 2008
  • pp: 10701–10709

Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance

C. H. Liu, M. H. Hong, H. W. Cheung, F. Zhang, Z. Q. Huang, L. S. Tan, and T. S. A. Hor  »View Author Affiliations


Optics Express, Vol. 16, Issue 14, pp. 10701-10709 (2008)
http://dx.doi.org/10.1364/OE.16.010701


View Full Text Article

Enhanced HTML    Acrobat PDF (614 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Tuning of surface plasmon resonance by gold and silver bimetallic thin film and bimetallic dot array is investigated. Laser interference lithography is applied to fabricate the nanostructures. A bimetallic dot structure is obtained by a lift-off procedure after gold and silver thin film deposition by an electron beam evaporator. Surface plasmon behaviors of these films and nanostructures are studied using UV-Vis spectroscopy. It is observed that for gold thin film on quartz substrate, the optical spectral peak is blue shifted when a silver thin film is coated over it. Compared to the plasmon band in single metal gold dot array, the bimetallic nanodot array shows a similar blue shift in its spectral peak. These shifts are both attributed to the interaction between gold and silver atoms. Electromagnetic interaction between gold and silver nanostructures is discussed using a simplified spring model.

© 2008 Optical Society of America

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(240.6680) Optics at surfaces : Surface plasmons
(310.6870) Thin films : Thin films, other properties
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 2, 2008
Revised Manuscript: June 11, 2008
Manuscript Accepted: June 13, 2008
Published: July 2, 2008

Citation
C. H. Liu, M. H. Hong, H. W. Cheung, F. Zhang, Z. Q. Huang, L. S. Tan, and T. S. A. Hor, "Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance," Opt. Express 16, 10701-10709 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-14-10701


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985). [CrossRef]
  2. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters~Springer (New York, 1995)
  3. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  4. T. Xu, C. T. Wang, C. L. Du, and X. G. Luo, "Plasmonic beam deflector," Opt. Express 16, 4753-4759 (2008). [CrossRef] [PubMed]
  5. Y. Q. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phys. Lett. 91, 061124 (2007). [CrossRef]
  6. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, "Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles," Science (Washington, D.C.) 277, 1078-1081 (1997). [CrossRef]
  7. P. Tobiska, O. Hugon, A. Trouillet, and H. Gagnaire, "An integrated optic hydrogen sensor based on SPR on palladium," Sens. Actuators, B. 74, 2001:168. [CrossRef]
  8. D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, "Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis," Appl. Phys. A 89, 407-411 (2007). [CrossRef]
  9. A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, "Radiation filters and emitters for the NIR based on periodically structured metal surfaces," J. Mod. Opt. 47, 2399-2419 (2000).
  10. A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, "Single-mode surface-plasmon laser," Appl. Phys. Lett. 76, 2164-2166 (2000). [CrossRef]
  11. F. Ma, M. H. Hong, and L. S. Tan, "Laser nanofabrication of large area plasmonic structures and surface Plasmon resonance tuning by thermal effect," Appl. Phys. A, in press.
  12. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface Plasmon Characteristics of Tunable Photoluminescence in Single Gold Nanorods," Phys. Rev. Lett. 95, 267405 (2005). [CrossRef]
  13. F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, "Plasmon resonances of a gold nanostar," Nano Lett. 7, 729-732 (2007). [CrossRef] [PubMed]
  14. A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, "Multiple plasmon resonances from gold nanostructures," Appl. Phys. Lett. 90, 143105 (2007). [CrossRef]
  15. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A Hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003). [CrossRef] [PubMed]
  16. P. Nordlander and E. Prodan, "Plasmon hybridization in nanoparticals near metallic surfaces," Nano Lett. 4, 2209-2213 (2004). [CrossRef]
  17. G. Leveque and O. J. F. Martin, "Optical interactions in a plasmonic particle coupled to a metallic film," Opt. Express. 14, 9971-9981 (2006). [CrossRef] [PubMed]
  18. N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering," Phys. Rev. B 65, 075419 (2002). [CrossRef]
  19. W. R. Holland and D. G. Hall, "Frequency shifts of an electric-dipole resonance near a conducting surface," Phys. Rev. Lett. 52, 1041-1044 (1984). [CrossRef]
  20. Y. L. Wang, H. J. Chen, S. J. Dong, and E. K. Wang, "Surface-enhanced Raman scattering of silver-gold bimetallic nanostructures with hollow interiors," J. Chem. Phys. 125, 044710 (2006). [CrossRef]
  21. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique. "Theory of surface plasmons and surface-plasmon polaritons," Rep. Prog. Phys. 70, 1-87 (2007). [CrossRef]
  22. B. H. Ong, X. C. Yuan, S. C. Tjin, J. W. Zhang, and H. M. Ng, "Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor," Sens. Actuators B 1141028-1034 (2006). [CrossRef]
  23. S. Y. Wu and H. P. Ho, "Sensitivity improvement of the surface plasmon resonance optical sensor by using a gold-silver transducing layer," in: Proceedings of the IEEE, Electron Devices, Hong Kong, 63-68 (2002). [CrossRef]
  24. N. Papanikolaou, "Optical properties of metallic nanoparticle arrays on a thin metallic film," Phys. Rev. B 75, 235426 (2007). [CrossRef]
  25. M. L. Schattenburg, R. J. Aucoin,  et al. "Optically matched trilevel resist process for nanostructure fabrication," J. Vac. Sci. Technol. B. 13, 3007-3011 (1995). [CrossRef]
  26. S. Tolansky, An Introduction to Interferometry (Longmans, Green, New York, 1955).
  27. Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, "Fabrication of nanostructures with laser interference lithography," J. Alloy. Compd. 449, 261-264 (2008). [CrossRef]
  28. C. X. Kan, W. P. Cai, C. C. Li, G. H. Fu, and L. D. Zhang, "Morphologic evolution and optical properties of nanostructured gold based on mesoporous silica," J. Appl. Phys. 96, 5727 (2004). [CrossRef]
  29. W. Y. Huang, W. Qian, and M. A. El-Sayed, "Photothermal reshaping of prismatic Au nanoparticles in periodic monolayer arrays by femtosecond laser pulses," J. Appl. Phys. 98, 114301 (2005). [CrossRef]
  30. M. L. Brongersma and PieterG.  Kik, eds. Surface plasmon nanophotonics (Springer, Netherlands, 2007), pp.17. [CrossRef]
  31. H. Kuhn, W. Hoppe, W. Lohmann, H. Mark, and H. Ziegler eds., Biophysik (Springer, Berlin, 1982), pp. 289.
  32. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited