OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 14 — Jul. 7, 2008
  • pp: 10710–10720

Propagation Properties of a Surface Plasmonic Waveguide with double elliptical air cores

Wenrui Xue, Ya-nan Guo, Peng Li, and Wenmei Zhang  »View Author Affiliations

Optics Express, Vol. 16, Issue 14, pp. 10710-10720 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (12650 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a kind of surface plasmonic waveguide with double elliptical air cores. The dependence of distribution of longitudinal energy flux density, effective index and propagation length of the fundamental mode supported by this waveguide on geometrical parameters and working wavelengths are analyzed using the finite-difference frequency-domain (FDFD) method. Results show that the longitudinal energy flux density distributes mainly in the two wedged corners which are formed by two elliptical air cores, and the closer to the corners the stronger the longitudinal energy flux density. The effective index and propagation length of the fundamental mode can be adjusted by the centric distance of two ellipses as well as the size of the two semiaxis. At the certain working wavelength, relative to the case of a=b, in the case of a>b, the energy in the metal is small, then the interaction of field and silver is weak, and the effective index becomes small, and the propagation length becomes large. With certain geometric parameters, relative to the case of λ=632.8nm, in the case of larger λ, the area of field distribution is large, and the energy in the metal is small, then the interaction of field and silver is weak, and the effective index becomes small, and the propagation length becomes large. This kind of hollow surface plasmonic waveguide can be applied to the field of photonic device integration and sensors.

© 2008 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Optics at Surfaces

Original Manuscript: May 13, 2008
Revised Manuscript: June 18, 2008
Manuscript Accepted: June 19, 2008
Published: July 2, 2008

Wenrui Xue, Ya-nan Guo, Peng Li, and Wenmei Zhang, "Propagation Properties of a Surface Plasmonic Waveguide with double elliptical air cores," Opt. Express 16, 10710-10720 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  2. E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  3. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006). [CrossRef] [PubMed]
  4. S. A. Maier, "Plasmonics: The promise of highly integrated optical devices," IEEE J. Sel. Top. Quantum Electron. 12, 1671-1677 (2007).
  5. E. N. Economou, "Surface plasmon in thin films," Phys. Rev. 182, 539-554 (1969). [CrossRef]
  6. P. Berini, "Plasmon polariton modes guided by a metal film of finite width," Opt. Lett. 24, 1011-1013 (1999). [CrossRef]
  7. J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, "Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding," Phys. Rev. B 76, 035434-10 (2007). [CrossRef]
  8. J. Guo, and R. Adato, "Control of 2D plasmon-polariton mode with dielectric nanolayers," Opt. Express 16, 1232-1237 (2008). [CrossRef] [PubMed]
  9. K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003). [CrossRef]
  10. F. Kusunokia, T. Yotsuya, J. Takahara, and T. Kobayashi, "Propagation properties of guided waves in index-guided two-dimensional optical waveguides," Appl. Phys. Lett. 86, 211101-3 (2005). [CrossRef]
  11. R. Gordon and A. G. Brolo, "Increased cut-off wavelength for a subwavelength hole in a real metal," Opt. Express 13, 1933-1938 (2005). [CrossRef] [PubMed]
  12. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114-3 (2005). [CrossRef]
  13. L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Express 13, 6645-6650 (2005). [CrossRef] [PubMed]
  14. D. F. P. Pile and T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, and M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106-3 (2005). [CrossRef]
  15. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. M. Moreno, and F. J. G. Vidal, "Guiding and focusing of electromagnetic fields with wedge plasmon polaritons," Phys. Rev. Lett. 100, 023901-4 (2008). [CrossRef] [PubMed]
  16. A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, "Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths," Opt. Express 16, 5252-5260 (2008). [CrossRef] [PubMed]
  17. J. Q. Lu and A. A. Maradudin, "Channel plasmons," Phys. Rev. B 42, 11159-11165 (1990). [CrossRef]
  18. S. L. Chen, J. Shakya, and M. Lipson, "Subwavelength confinement in an integrated metal slot waveguide on silicon," Opt. Lett. 31, 2133-2135 (2006). [CrossRef] [PubMed]
  19. D. F. P. Pile and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett. 29, 1069-1071 (2004). [CrossRef] [PubMed]
  20. I. Lee, J. Jung, J. Park, H. Kim, and B. Lee, "Dispersion characteristics of channel plasmon polariton waveguides with step-trench-type grooves," Opt. Express 15, 16596-16603 (2007). [CrossRef] [PubMed]
  21. D. Arbel and M. Orenstein, "Plasmonic modes in w-shaped metal-coated silicon grooves," Opt. Express 16, 3114-3119 (2008). [CrossRef] [PubMed]
  22. Z. Zhu and T. G. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers," Opt. Express 10, 853-864 (2002). [PubMed]
  23. S. Guo, F. Wu, and S. Albin, "Loss and dispersion analysis of microstructured optical fibers by finite-difference method," Opt. Express 12, 3341-3352 (2004). [CrossRef] [PubMed]
  24. C. Yu and H. C. Chang, "Yee-mesh-based finite difference eigenmode solver with PML absorbing boundaray conditions for optical waveguides and photonic craystal fibers," Opt. Express 12, 6165-6177 (2004). [CrossRef] [PubMed]
  25. W. E. Arnoldi, "The principle of minimized iteration in the solution of matrix eigenvalue problems," Q. Appl. Math. 9, 17-29 (1951).
  26. M. Yan and M. Qiu, "Guided plasmon polariton at 2D metal coners," J. Opt. Soc. Am. B 24, 2333-2342 (2007). [CrossRef]
  27. H. Wang, W. Xue, and W. Zhang, "Negative dispersion properties of photonic crystal fiber with dual core and composite lattice," Acta Optica Sinica 28, 27-30 (2008). [CrossRef]
  28. L. Guo, Y. Wu, W. Xue, and G. Zhou, "Dispersion properties of photonic crystal fiber with composite hexagonal air hole lattice," Acta Optica Sinica 27, 935-939 (2007).
  29. Y. Wu, L. Guo, W. Xue, and G. Zhou, "Photonic crystal fiber with single polarization," Acta Optica Sinica 27, 593-597 (2007).
  30. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4317-4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited