OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 14 — Jul. 7, 2008
  • pp: 10750–10761

Optical properties of superconducting nanowire single-photon detectors

Vikas Anant, Andrew J. Kerman, Eric A. Dauler, Joel K. W. Yang, Kristine M. Rosfjord, and Karl K. Berggren  »View Author Affiliations


Optics Express, Vol. 16, Issue 14, pp. 10750-10761 (2008)
http://dx.doi.org/10.1364/OE.16.010750


View Full Text Article

Enhanced HTML    Acrobat PDF (2150 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We measured the optical absorptance of superconducting nanowire single photon detectors. We found that 200-nm-pitch, 50%-fillfactor devices had an average absorptance of 21% for normally-incident front-illumination of 1.55-µm-wavelength light polarized parallel to the nanowires, and only 10% for perpendicularly-polarized light. We also measured devices with lower fill-factors and narrower wires that were five times more sensitive to parallel-polarized photons than perpendicular-polarized photons. We developed a numerical model that predicts the absorptance of our structures. We also used our measurements, coupled with measurements of device detection efficiencies, to determine the probability of photon detection after an absorption event. We found that, remarkably, absorbed parallel-polarized photons were more likely to result in detection events than perpendicular-polarized photons, and we present a hypothesis that qualitatively explains this result. Finally, we also determined the enhancement of device detection efficiency and absorptance due to the inclusion of an integrated optical cavity over a range of wavelengths (700-1700 nm) on a number of devices, and found good agreement with our numerical model.

© 2008 Optical Society of America

OCIS Codes
(040.5160) Detectors : Photodetectors
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4840) Optical design and fabrication : Testing
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Detectors

History
Original Manuscript: February 28, 2008
Revised Manuscript: June 27, 2008
Manuscript Accepted: June 27, 2008
Published: July 3, 2008

Citation
Vikas Anant, Andrew J. Kerman, Eric A. Dauler, Joel K. W. Yang, Kristine M. Rosfjord, and Karl K. Berggren, "Optical properties of superconducting nanowire single-photon detectors," Opt. Express 16, 10750-10761 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-14-10750


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K.-S. Hyun, Y. Paek, Y.-H. Kwon, I. Yun, and E.-H. Lee, "High-speed and highly reliable InP/InGaAs avalanche photodiode for optical communications," Proc SPIE 4999, 130-137 (2003).
  2. E. A. Dauler, B. S. Robinson, A. J. Kerman, V. Anant, R. J. Barron, K. K. Berggren, D. O. Caplan, J. J. Carney, S. A. Hamilton, K. M. Rosfjord, M. L. Stevens, and J. K. Yang, "1.25 Gbit/s photon-counting optical communications using a two-element superconducting nanowire single photon detector," Proc. SPIE 6372, 637212 (2006).
  3. A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, "Single Photon Quantum Cryptography," Phys. Rev. Lett. 89, 187,901 (2002). [CrossRef]
  4. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343-348 (2007). [CrossRef]
  5. E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001). [CrossRef] [PubMed]
  6. A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol??tsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687-4689 (2002). [CrossRef]
  7. A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol??tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors," Appl. Phys. Lett. 84, 5338-5340 (2004). [CrossRef]
  8. R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, "Single photon source characterization with a superconducting single photon detector," Opt. Express 13, 10,846-10,853 (2005). [CrossRef]
  9. J. K.W. Yang, E. Dauler, A. Ferri, A. Pearlman, A. Verevkin, G. Gol??tsman, B. Voronov, R. Sobolewski,W. E. Keicher, and K. K. Berggren, "Fabrication development for nanowire GHz-counting-rate single-photon detectors," IEEE Trans. Appl. Supercond. 15, 626-630 (2005). [CrossRef]
  10. K. M. Rosfjord, J. K.W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol??tsman, and K. K. Berggren, "Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating," Opt. Express 14, 527-534 (2006). [CrossRef] [PubMed]
  11. X. J. Yu and H. S. Kwok, "Optical wire-grid polarizers at oblique angles of incidence," J. Appl. Phys. 93, 4407-4412 (2003). [CrossRef]
  12. P. Yeh, "New Optical-Model for Wire Grid Polarizers," Opt. Commun. 26, 289-292 (1978). [CrossRef]
  13. For an electric field polarized parallel to the wires in a subwavelength grating, an accurate result for the A|| can be obtained with the Fresnel equations where an effective index neff = ((1?? f) n2 air + f n2 NbN)1/2 is used for the thin film consisting of NbN subwavelength gratings (nair = 1, nNbN = 5.23??i5.82, and f is the fill-factor). A simple effective index model that only depends on f will not work for perpendicular polarization since A? depends on both f and p.
  14. P. Lalanne and D. Lemercier-Lalanne, "Depth dependence of the effective properties of subwavelength gratings," J. Opt. Soc. Am. A 14, 450-458 (1997). [CrossRef]
  15. Z. Yan, A. H. Majedi, and S. Safavi-Naeini, "Physical Modeling of Hot-Electron Superconducting Single-Photon Detectors," IEEE Trans. Appl. Supercond. 17, 3789-3794 (2007). [CrossRef]
  16. While our fabrication process (see Refs. 9 and 10) leaves behind 10-40 nm of residual resist on top of the nanowires, we found that including the resist in our geometry did not affect our results.
  17. Energy dispersive X-ray (EDX) analysis was performed on two cross-section samples that confirmed the presence of oxide atop the NbN surface. There was also a contrast difference in the oxide layer from the NbN that was clearly visible in the TEM image. TEM imaging services were provided by Materials Analytical Services, Inc.
  18. Measurements of the refractive indices of NbN and NbNxOy made at room temperature by J. A. Woolam, Inc. using spectroscopic ellipsometry on a 12-nm-thick NbN film deposited on a sapphire wafer.
  19. I. H. Malitson, "Refraction and dispersion of synthetic sapphire," J. Opt. Soc. Am. 52, 1377-1379 (1962). [CrossRef]
  20. The patterned gold film was approximately 100 nm thick.We used bulk values for the complex refractive index of gold found in Ref. 21. For a thin film thicker than 30 nm, the bulk refractive index can be used in this wavelength range (see Ref. 22).
  21. E. D. Palik, Handbook of optical constants of solids, Academic Press handbook series (Academic Press, Orlando, 1985).
  22. C. Reale, "Optical constants of vacuum deposited thin metal films in the near infrared," Infrared Phys. 10, 173-181 (1970). [CrossRef]
  23. A. J. Kerman, E. A. Dauler, J. K.W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol??tsman, and B. M. Voronov, "Constriction-limited detection efficiency of superconducting nanowire single-photon detectors," Appl. Phys. Lett. 90, 101,110 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited