OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 14 — Jul. 7, 2008
  • pp: 10769–10785

Anisoplanatism in airborne laser communication

James A. Louthain and Jason D. Schmidt  »View Author Affiliations

Optics Express, Vol. 16, Issue 14, pp. 10769-10785 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1531 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Airborne laser-communication systems require special considerations in size, complexity, power, and weight. We reduce the variability of the received signal by implementing optimized multiple-transmitter systems to average out the deleterious effects of turbulence. We derive the angular laser-beam separation for various isoplanatic and uncorrelated (anisoplanatic) conditions for the phase and amplitude effects. In most cases and geometries, the angles ordered from largest to smallest are: phase uncorrelated angle (equivalent to the tilt uncorrelated angle), tilt isoplanatic angle, phase isoplanatic angle, scintillation uncorrelated angle, and scintillation correlation angle ( θ ψ ind > θ TA > θ 0 > θ χ ind > θ χ c ) . Multiple beams with angular separations beyond θ χ c tend to reduce scintillation variations. Larger separations such as θTA reduce higher-order phase and scintillation variations and still larger separations beyond θ ψ ind tend to reduce the higher and lower-order (e.g. tilt) phase and scintillation effects. Simulations show two-transmitter systems reduce bit error rates for ground-to-air, air-to-air, and ground-to-ground scenarios.

© 2008 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(060.4510) Fiber optics and optical communications : Optical communications
(060.2605) Fiber optics and optical communications : Free-space optical communication
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Atmospheric and oceanic optics

Original Manuscript: April 9, 2008
Revised Manuscript: June 24, 2008
Manuscript Accepted: June 27, 2008
Published: July 3, 2008

James A. Louthain and Jason D. Schmidt, "Anisoplanatism in airborne laser communication," Opt. Express 16, 10769-10785 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. M. Haas and J. H. Shapiro, "Capacity of Wireless Optical Communications," IEEE J. Sel. Areas Commun. 21, 1346-1357 (2003). [CrossRef]
  2. P. T. Ryan, W. H. Lowrey, I. A. DeLaRue, and R. Q. Fugate, "Scintillation characterization for multiple beams," Proc. SPIE 3763, 210-217 (1999).
  3. P. Polynkin, A. Peleg, L. Klein, T. Rhoadarmer, and J. Moloney, "Optimized multiemitter beams for free-space optical communications through turbulent atmosphere," Opt. Lett 32, 885-887 (2007). [CrossRef] [PubMed]
  4. A. Peleg and J. V. Moloney, "Scintillation index for two Gaussian laser beams with different wavelengths in weak atmospheric turbulence," J. Opt. Soc. Am. A 23, 3114-3122 (2006). [CrossRef]
  5. I. I. Kim, H. Hakakha, P. Adhikari, E. J. Korevaar, and A. K. Majumdar, "Scintillation reduction using multiple transmitters," Proc. SPIE 2990, 102 (1997). [CrossRef]
  6. J. A. Anguita, M. A. Neifeld, and B. V. Vasic, "Multi-beam space-time coded systems for optical atmospheric channels," Proc. SPIE 6304, 1-9 (2006).
  7. J. A. Anguita, M. A. Neifeld, and B. V. Vasic, "Spatial correlation and irradiance statistics in a multiple-beam terrestial free-space optical communication link" Appl. Opt. 46, 6561-6571 (2007). [CrossRef] [PubMed]
  8. D. L. Fried, "Anisoplanatism in adaptive optics," J. Opt. Soc. Am. A 72, 52-61 (1982). [CrossRef]
  9. R. J. Sasiela, Electromagnetic wave propagation in turbulence. Evaluation and application of Mellin transforms, 2nd ed. (SPIE Publications, 2007).
  10. R. J. Sasiela and J. D. Shelton, "Transverse spectral filtering andMellin transform techniques applied to the effect of outer scale on tilt and tilt anisoplanatism," J. Opt. Soc. Am. A 10, 646660 (1993). [CrossRef]
  11. J. W. Goodman, Statistical Optics (John Wiley & Sons, Hoboken, NJ, 1985).
  12. M. C. Roggemann and B. M. Welsh, Imaging Through Turbulence (CRC Press, 1996).
  13. D. L. Fried, "Optical resolution through a randomly inhomogeneous medium for very long and very short exposures," J. Opt. Soc. Am. A 56, 1372-1379 (1966). [CrossRef]
  14. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE Optical Engineering Press Bellingham, WA, 2005). [CrossRef]
  15. A. D. Wheelon, Electromagnetic scintillation. 1, Geometrical Optics (Cambridge Univ. Press, 2001).
  16. F. D. Eaton and G. D. Nastrom, "Preliminary estimates of the vertical profiles of inner and outer scales from White Sands Missile Range, NM VHF radar observations," Radio Sci. 33, 859-903 (1998). [CrossRef]
  17. J. A. Louthain and J. D. Schmidt, "Anisoplanatic Approach to Airborne Laser Communication," (MSS Active E-O Systems Proceedings, Military Sensing Information Analysis Center (SENSIAC), 2007).
  18. E. P. Magee, M. R. Whiteley, S. T. Das, and B. M. Welsh, "Tilt anisoplanatism in extended turbulence propagation," Proc. SPIE 4976, 13-21 (2003). [CrossRef]
  19. D. L. Fried, "Spectral and Angular Covariance of Scintillation for propagation in a randomly inhomogeneous medium," Appl. Opt. 10, 721-731 (1971). [CrossRef]
  20. M. C. Roggemann, B. M. Welsh, D. A. Montera, and T. Rhoadarmer, "Method for simulating atmospheric turbulence phase effects for multiple time slices and anisoplanatic conditions," Appl. Opt 34, 4037-4051 (1995). [CrossRef] [PubMed]
  21. B. M. Welsh, "Fourier-series-based atmospheric phase screen generator for simulating anisoplanatic geometries and temporal evolution," Proc. SPIE 3125, 327 (1997). [CrossRef]
  22. J. A. Louthain, "Master�??s Thesis: Atmospheric turbulence scintillation effects of wavefront tilt estimation," (1997).
  23. J. A. Louthain and B. M. Welsh, "Fourier-series-based phase and amplitude optical field screen generator for weak atmospheric turbulence," Proc. SPIE 3381, 286-296 (1998). [CrossRef]
  24. S. Coy, "Choosing Mesh Spacings and Mesh Dimensions for Wave Optics Simulation,"Proc. SPIE 5894, 598405 (2005).
  25. Y. Dikmelik and F. M. Davidson, "Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence," Appl. Opt. 44, 4946-4952 (2005). URL http://ao.osa.org/abstract.cfm?URI=ao-44-23-4946 [CrossRef] [PubMed]
  26. S. B. Alexander, Optical Communication Receiver Design, SPIE Tutorial Texts in Optical Engineering, vol. TT22; IEE Telecommunications Series, vol. 37 (SPIE Press, Bellingham, WA, 1997).
  27. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications, 2nd ed. (SPIE Press, 2001). [CrossRef]
  28. E. Dereniak and G. Boreman, Infrared Detectors and Systems (Wiley New York, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited