OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 14 — Jul. 7, 2008
  • pp: 10786–10802

Analysis of frequency quadrupling using a single Mach-Zehnder modulator for millimeter-wave generation and distribution over fiber systems

Mohmoud Mohamed, Xiupu Zhang, Bouchaib Hraimel, and Ke Wu  »View Author Affiliations

Optics Express, Vol. 16, Issue 14, pp. 10786-10802 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (730 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We comprehensively investigate three modulation techniques for the generation of millimeter-wave (mm-wave) using optical frequency quadrupling with a dual–electrode Mach-Zehnder modulator (MZM), i.e. Technique-A, Technique-B and Technique-C. For Technique-A, an RF signal drives the two electrodes of the MZM with maximum transmission bias, and this MZM is used for both the mm-wave generation and signal modulation. Technique-B is the same as Technique-A, but 180° phase shift between the two electrodes is applied. Technique-C is the same as Technique-B, but the MZM is only used for the mm-wave generation without signal modulation. It is found that Technique-B and Technique-C are better for frequency quadrupling than frequency doubling, tripling and sextupling. Both theoretical analysis and simulation show that the generated mm-wave suffers from constructive/destructive interaction due to fiber chromatic dispersion in Technique-A. However, the generated mm-wave is almost robust to fiber chromatic dispersion in Technique-B and Technique- C. It is found that Technique-C is the best in the quality of the generated mm-wave, especially when poor optical filtering is used. In addition, we develop a theory for calculation of Q-factor in an mm-wave over fiber system using the three modulation techniques for mm-wave generation. We consider an RF at 7.5 GHz and obtain an mm-wave at 30 GHz as an example, i.e. a frequency quadrupler. We evaluate the generation and distribution in terms of system Q-factor. The impact of RF modulation index, chromatic dispersion, MZM extinction ratio and optical filtering on Q-factor are investigated.

© 2008 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(190.2620) Nonlinear optics : Harmonic generation and mixing
(230.4110) Optical devices : Modulators

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 10, 2008
Revised Manuscript: June 26, 2008
Manuscript Accepted: June 28, 2008
Published: July 3, 2008

Mohmoud Mohamed, Xiupu Zhang, Bouchaib Hraimel, and Ke Wu, "Analysis of frequency quadrupling using a single Mach-Zehnder modulator for millimeter-wave generation and distribution over fiber systems," Opt. Express 16, 10786-10802 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Bakaul, A. Nirmalathas, and C. Lim, "Multifunctional WDM optical interface for millimeter-wave fiber-radio antenna base station," J. Lightwave Technol. 23, 1210-1218 (2005). [CrossRef]
  2. B. Masella and X. Zhang, "A novel single wavelength balanced system for radio over fiber links," IEEE Photon Technol. Lett. 18, 301-303 (2006). [CrossRef]
  3. C. Wu and X. Zhang, "Impact of nonlinear distortion in radio over fiber systems with single-side band and tandem single-side band subcarrier modulations," J. Lightwave Technol. 24, 2076-2090 (2006). [CrossRef]
  4. G. Qi, J. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, "Generation and distribution of a wideband continuously tunable mm-wave signal with an optical external modulation technique," IEEE Trans. on Microwave Theory Tech. 53, 3090-3097 (2005). [CrossRef]
  5. J. Yu, J. Gu, X. Liu, Z. Jia, and G. Chang, "Seamless integration of an 8?2.5 Gb/s WDM-PON and radio-over-biber using all- optical up-conversion based on Raman- assisted FWM," IEEE Photon. Technol. Lett. 17, 1986-1988 (2005). [CrossRef]
  6. J. Seo, Y. Seo, and W. Choi, "1.244 Gb/s data distribution in 60 GHz remote optical frequency up-conversion systems," IEEE Photon. Technol. Lett. 18, 1389-1391 (2005).
  7. J. Yu, Z. Jia, and G. Chang, "All-optical mixer based on cross-absorption modulation in electroabsorption modulator," IEEE Photon. Technol. Lett. 18, 2421-2423 (2005).
  8. H. Song and J. Lee, "Error-free simultaneous all-optical upconversion of WDM radio-over-fiber signals," IEEE Photon. Technol. Lett. 17, 1731-1733 (2005). [CrossRef]
  9. T. Kuri, K. Kitayama, and Y. Takahashi, "A single light-source configuration for full-duplex 60-GHz-band radio-on fiber system," IEEE Trans. Microwave Theory Tech. 51, 431-439 (2003). [CrossRef]
  10. J. Yu, Z. Jia, L. Yi, Y. Su, and G. Chang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photon. Technol. Lett. 18, 265-267 (2006). [CrossRef]
  11. J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. Chang, "DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver," IEEE Photon. Technol. Lett. 18, 1418-1420 (2006). [CrossRef]
  12. T. Cho and K. Kim, "Effect of third-order intermodulation on radio-over-fiber systems by a dual -electrode Mach-Zehnder modulator with ODSB and OSSB signals," J. Lightwave Technol. 24, 2052-2058 (2006). [CrossRef]
  13. M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Simultaneous multiplexing and demultiplexing of wavelength-interleaved channels in DWDM millimeter-wave fiber-radio networks," J. Lightwave Technol. 24, 3341-3352 (2006). [CrossRef]
  14. C. Lin, W. Peng, P. Peng, J. Chen, C. Peng, B. Chiou, and S. Chi, "Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity," IEEE Photon. Technol. Lett. 18, 2481-2483 (2006). [CrossRef]
  15. M. Bakaul, A. Nirmalathas, C. Lim, and D. Novak, "Hybrid multiplexing of multiband optical access technologies towards an integrated DWDM network," IEEE Photon. Technol. Lett. 18, 2311-2313 (2006). [CrossRef]
  16. X. Zhang, B. Liu, J. Yao, K. Wu, and R. Kashyap, "A novel millimeter-wave-band radio-over-fiber system with dense wavelength-division multiplexing bus architecture," IEEE Trans. Microwave Theory Tech. 54, 929-937 (2006). [CrossRef]
  17. A. Kaszubowska, L. Hu, and L. Barry, "Remote downconversion with wavelength reuse for the radio/fiber uplink connection," IEEE Photon. Technol. Lett. 18, 562-564 (2006). [CrossRef]
  18. L. Chen, H. Wen, and S. Wen, "A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection," IEEE Photon. Technol. Lett. 18, 2056-2058 (2006). [CrossRef]
  19. K. Wu, J. Yao, X. Zhang, and R. Kashyap, "Millimeter-wave photonic techniques for broadband communication and sensor applications," Proceedings of IEEE LEOS annual meeting 2006, 270-271, Montreal.
  20. K. Ikeda, T. Kuri, and K. Kitayama, " Simultaneous three-band modulation and fiber-optic transmission of 2.5-Gb/s baseband, microwave-, and 60-GHz-band signals on a single wavelength," J. Lightwave Technol. 21, 3194-3202 (2003). [CrossRef]
  21. M. Attygalle, C. Lim, and A. Nirmalathas, "Dispersion-tolerant multiple WDM channel millimeter-wave signal generation using a single monolithic mode-locked semiconductor laser," J. Lightwave Technol. 23, 295-303 (2005). [CrossRef]
  22. T. Nakasyotani, H. Toda, T. Kuri, and K. Kitayama, "Wavelength-division-multiplexed Millimeter-waveband radio-on-fiber system using a supercontinuum light source," J. Lightwave Technol. 24, 404-410 (2006). [CrossRef]
  23. B. Hraimel, M. O. Tawati, and K. Wu "Closed-form dynamic range expression of dual-electrode Mach-Zehnder modulator in radio over fiber WDM system" J. Lightwave Technol. 24, 2380-2387 (2006). [CrossRef]
  24. M. Larrode, A. Koonen, J. Vegas, and A. NgOma, "Bidirectional Radio-Over-Fiber Link Employing Optical Frequency Multiplication," IEEE Photon. Technol. Lett., vol. 18, 241-243 (2006). [CrossRef]
  25. M. Larrode, A. Koonen, and J. Olmos, "Fiber-Based Broadband Wireless Access Employing Optical Frequency Multiplication," IEEE J. Sel. Top. Quantum Electron. 12, 875 - 881 (2006). [CrossRef]
  26. M. Larrode, A. Koonen, and J. Olmos, "Overcoming modal bandwidth limitation in radio-over-multimode fiber links," IEEE Photon. Technol. Lett. 18, 2428-2430 (2006). [CrossRef]
  27. A. Ng??oma, A. Koonen, I. Tafur, H. Boom, and G. Khoe, "Using optical frequency multiplication to deliver a 17 GHz 64 QAM modulated signal a simplified radio access unit fed by multimode fiber," OFC 2005, Anaheim CA.
  28. M. Larrode, A. Koonen, J. Olmos, E. Verdurmen, and J. Turkiewicz, "Dispersion tolerant radio-over-fiber transmission of 16 and 64 QAM radio signals at 40 GHz," IEE Electron. Lett. 42, 872-874 (2006). [CrossRef]
  29. M. Mohamed, X. Zhang, B. Hraimel, and K. Wu "Efficient Photonic Generation of Millimeter-Waves Using Optical Frequency Multiplication in Radio-over-fiber Systems," Proceeding IEEE Topic meeting on Microwave Photonics 2007, paper Th.-4.20, Victoria, Canada.
  30. B. Hraimel, R. Kashyap, X. Zhang, J. Yao, and K. Wu "Large signal analysis of fiber dispersion effect on photonic up-conversion in radio over fiber link using dual electrode Mach-Zehnder external modulator," Proc. SPIE 6343, 63432L (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited