OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 14 — Jul. 7, 2008
  • pp: 10823–10834

Numerical study of surface plasmon enhanced nonlinear absorption and refraction

Dana C. Kohlgraf-Owens and Pieter G. Kik  »View Author Affiliations


Optics Express, Vol. 16, Issue 14, pp. 10823-10834 (2008)
http://dx.doi.org/10.1364/OE.16.010823


View Full Text Article

Enhanced HTML    Acrobat PDF (875 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Maxwell Garnett effective medium theory is used to study the influence of silver nanoparticle induced field enhancement on the nonlinear response of a Kerr-type nonlinear host. We show that the composite nonlinear absorption coefficient, βc , can be enhanced relative to the host nonlinear absorption coefficient near the surface plasmon resonance of silver nanoparticles. This enhancement is not due to a resonant enhancement of the host nonlinear absorption, but rather due to a phase-shifted enhancement of the host nonlinear refractive response. The enhancement occurs at the expense of introducing linear absorption, αc , which leads to an overall reduced figure of merit βc /αc for nonlinear absorption. For thin (<1 µm) composites, the use of surface plasmons is found to result in an increased nonlinear absorption response compared to that of the host material.

© 2008 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(160.1245) Materials : Artificially engineered materials
(260.2065) Physical optics : Effective medium theory
(160.4236) Materials : Nanomaterials

ToC Category:
Materials

History
Original Manuscript: May 12, 2008
Revised Manuscript: June 24, 2008
Manuscript Accepted: June 28, 2008
Published: July 3, 2008

Citation
Dana C. Kohlgraf-Owens and Pieter G. Kik, "Numerical study of surface plasmon enhanced nonlinear absorption and refraction," Opt. Express 16, 10823-10834 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-14-10823


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Francois, M. Mostafavi, J. Belloni, and J. A. Delaire, "Optical limitation induced by gold clusters: Mechanism and efficiency," Phys. Chem. Chem. Phys. 3, 4965-4971 (2001). [CrossRef]
  2. L. Francois, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, "Optical limitation induced by gold clusters. 1. Size effect," J. Phys. Chem. B 104, 6133-6137 (2000). [CrossRef]
  3. F. E. Hernandez, W. Shensky, I. Cohanoschi, D. J. Hagan, and E. W. Van Stryland, "India ink/carbon disulfide creates laser safety device," Laser Focus World 37, 125 (2001).
  4. F. E. Hernandez, W. Shensky, I. Cohanoschi, D. J. Hagan, and E. W. Van Stryland, "Viscosity dependence of optical limiting in carbon black suspensions," Appl. Opt. 41, 1103-1107 (2002). [CrossRef] [PubMed]
  5. F. E. Hernandez, S. S. Yang, V. Dubikovskiy, I. W. Shensky, E. W. Van Stryland, and D. J. Hagan, "Dual Focal Plane Visible Optical Limiter," J. Nonlinear Opt. Phys. Mater. 9, 423 (2000). [CrossRef]
  6. X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, "Broadband optical limiting with multiwalled carbon nanotubes," Appl. Phys. Lett. 73, 3632-3634 (1998). [CrossRef]
  7. Y. P. Sun and J. E. Riggs, "Organic and inorganic optical limiting materials. From fullerenes to nanoparticles," Int. Rev. Phys. Chem. 18, 43-90 (1999). [CrossRef]
  8. G. Wang and W. F. Sun, "Optical limiting of gold nanoparticle aggregates induced by electrolytes," J. Phys. Chem. B 110, 20901-20905 (2006). [CrossRef] [PubMed]
  9. J. E. Sipe and R. W. Boyd, "Nonlinear Susceptibility of Composite Optical-Materials in the Maxwell Garnett Model," Phys. Rev. A 46, 1614-1629 (1992). [CrossRef] [PubMed]
  10. M. I. Stockman, K. B. Kurlayev, and T. F. George, "Linear and nonlinear optical susceptibilities of Maxwell Garnett composites: Dipolar spectral theory," Phys. Rev. B 60, 17071-17083 (1999). [CrossRef]
  11. D. D. Smith, G. Fischer, R. W. Boyd, and D. A. Gregory, "Cancellation of photoinduced absorption in metal nanoparticle composites through a counterintuitive consequence of local field effects," J. Opt. Soc. Am. B 14, 1625-1631 (1997). [CrossRef]
  12. A. E. Neeves and M. H. Birnboim, "Composite structures for the enhancement of nonlinear-optical susceptibility," J. Opt. Soc. Am. B 6, 787-796 (1989). [CrossRef]
  13. A. A. Scalisi, G. Compagnini, L. D'Urso, and O. Puglisi, "Nonlinear optical activity in Ag-SiO2 nanocomposite thin films with different silver concentration," Appl. Surf. Sci. 226, 237-241 (2004). [CrossRef]
  14. S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, and D. Zhu, "Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands," Chem. Phys. Lett. 356, 403-408 (2002). [CrossRef]
  15. S. Debrus, J. Lafait, M. May, N. Pincon, D. Prot, C. Sella, and J. Venturini, "Z-scan determination of the third-order optical nonlinearity of gold:silica nanocomposites," J. Appl. Phys. 88, 4469-4475 (2000). [CrossRef]
  16. Y. Hosoya, T. Suga, T. Yanagawa, and Y. Kurokawa, "Linear and nonlinear optical properties of sol-gel-derived Au nanometer-particle-doped alumina," J. Appl. Phys. 81, 1475-1480 (1997). [CrossRef]
  17. H. B. Liao, R. F. Xiao, J. S. Fu, H. Wang, K. S. Wong, and G. K. L. Wong, "Origin of third-order optical nonlinearity in Au:SiO2 composite films on femtosecond and picosecond time scales," Opt. Lett. 23, 388-390 (1998). [CrossRef]
  18. E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, "Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: negative sign of the nonlinear refractive index," Appl. Surf. Sci. 247, 390-395 (2005). [CrossRef]
  19. K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, "Optical nonlinearities of a high concentration of small metal particles dispersed in glass: copper and silver particles," J. Opt. Soc. Am. B 11, 1236-1243 (1994). [CrossRef]
  20. O. Maruyama, Y. Senda, and S. Omi, "Non-linear optical properties of titanium dioxide films containing dispersed gold particles," J. Non-Cryst. Solids 259, 100-106 (1999). [CrossRef]
  21. C. Flytzanis, F. Hache, M. C. Klein, D. Ricard, and R. Roussignol, "Nonlinear Optics In Composite Materials," in Progress In Optics 29, E. Wolf, ed. (Elsevier Science Publishers B.V., 1991), pp. 321-411.
  22. F. Hache, D. Ricard, and C. Flytzanis, "Optical Nonlinearities of Small Metal Particles - Surface-Mediated Resonance and Quantum Size Effects," J. Opt. Soc. Am. B 3, 1647-1655 (1986). [CrossRef]
  23. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The Optical Kerr Effect in Small Metal Particles and Metal Colloids - the Case of Gold," Appl. Phys. A: Mater. Sci. Proces. 47, 347-357 (1988). [CrossRef]
  24. D. Ricard, P. Roussignol, and C. Flytzanis, "Surface-mediated enhancement of optical phase conjugation in metal colloids," Opt. Lett. 10, 511-513 (1985). [CrossRef] [PubMed]
  25. R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, "Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals," J. Phys. D 34, 1602-1611 (2001). [CrossRef]
  26. A. Samoc, "Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared," J. Appl. Phys. 94, 6167-6174 (2003). [CrossRef]
  27. Dr. Scott Webster, CREOL and FPCE: The College of Optics and Photonics, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816 (personal communication, 2007).
  28. P. B. Johnson and R. W. Christy, "Optical-Constants of Noble-Metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  29. R. del Coso and J. Solis, "Relation between nonlinear refractive index and third-order susceptibility in absorbing media," J. Opt. Soc. Am. B 21, 640-644 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited