OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 14 — Jul. 7, 2008
  • pp: 10841–10848

Efficient excitations of radially and azimuthally polarized Nd3+:YAG ceramic microchip laser by use of subwavelength multilayer concentric gratings composed of Nb2O5/SiO2

Jian-lang Li, Ken-ichi Ueda, Lan-xiang Zhong, Mitsuru Musha, Akira Shirakawa, and Takashi Sato  »View Author Affiliations


Optics Express, Vol. 16, Issue 14, pp. 10841-10848 (2008)
http://dx.doi.org/10.1364/OE.16.010841


View Full Text Article

Enhanced HTML    Acrobat PDF (785 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Cylindrical vector beams were produced from laser diode end-pumped Nd:YAG ceramic microchip laser by use of two types of subwavelength multilayer gratings as the axisymmetric-polarization output couplers respectively. The grating mirrors are composed of high- and low-refractive- index (Nb2O5/SiO2) layers alternately while each layer is shaped into triangle and concentric corrugations. For radially polarized laser output, the beam power reached 610mW with a polarization extinction ratio (PER) of 61:1 and a slope efficiency of 68.2%; for azimuthally polarized laser output, the beam power reached 626mW with a PER of 58:1 and a slope efficiency of 47.6%. In both cases, the laser beams had near-diffraction limited quality. Small differences of beam power, PER and slope efficiency between radially and azimuthally polarized laser outputs were not critical, and could be minimized by further optimized adjustment to laser cavity and the reflectances of respective grating mirrors. The results manifested, by use of the photonic crystal gratings mirrors and end-pumped microchip laser configuration, CVBs can be generated efficiently with high modal symmetry and polarization purity.

© 2008 Optical Society of America

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state
(230.5440) Optical devices : Polarization-selective devices
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 19, 2008
Revised Manuscript: June 26, 2008
Manuscript Accepted: June 27, 2008
Published: July 3, 2008

Citation
Jian-lang Li, Ken-ichi Ueda, Lan-xiang Zhong, Mitsuru Musha, Akira Shirakawa, and Takashi Sato, "Efficient excitations of radially and azimuthally polarized Nd3+:YAG ceramic microchip laser by use of subwavelength multilayer concentric gratings composed of Nb2O5/SiO2," Opt. Express 16, 10841-10848 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-14-10841


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Pohl, "Operation of a ruby laser in the purely transverse electric mode TE01," Appl. Phys. Lett. 20, 266-267 (1972). [CrossRef]
  2. R. Oron, S. Blit, N. Davidson, A A. Friesem, Z. Bomzon, and E. Hasman, "The formation of laser beams with pure azimuthal or radial polarization," Appl. Phys. Lett. 77, 3322-3324 (2000). [CrossRef]
  3. T. Moser, J. Balmer, D. Delbeke, P. Muys, S. Verstuyft, and R. Baets, "Intracavity generation of radially polarized CO2 laser beams based on a simple binary dielectric diffraction grating," Appl. Opt. 45, 8517-8522 (2006). [CrossRef] [PubMed]
  4. Y. Kozawa and S. Sato, "Generation of a radially polarized laser beam by use of a conical Brewster prism," Opt. Lett. 30, 3063-3065 (2005). [CrossRef] [PubMed]
  5. A. Ashkin, "History of optical trapping and manipulation of small-neutral particle, atoms, and molecules," IEEE J. Sel. Top. Quantum Electron. 6, 841-856 (2000). [CrossRef]
  6. H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato, "Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam," Opt. Lett. 32, 1839-1841 (2007). [CrossRef] [PubMed]
  7. Q. Zhan and J. R. Leger, "Microellipsometer with Radial Symmetry," Appl. Opt. 41, 4630-4637 (2002). [CrossRef] [PubMed]
  8. G. Niziev and A. V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D 32, 1455-1461 (1999). [CrossRef]
  9. V. Nesterov, V. G. Niziev, and V. P. Yakunin, "Generation of high-power radially polarized beam," J. Phys. D 32, 2871-2875 (1999). [CrossRef]
  10. J. -l. Li, K. -i. Ueda, M. Musha, A. Shirakawa, and L. -x. Zhong, "Generation of radially polarized mode in Yb fiber laser by using a dual conical prism," Opt. Lett. 31, 2969-2971 (2006). [CrossRef] [PubMed]
  11. J. -l. Li, K. -i. Ueda, M. Musha, A. Shirakawa, and Z. -m. Zhang, "Converging-axicon-based radially polarized ytterbium fiber laser and evidence on the mode profile inside the gain fiber," Opt. Lett. 32, 1360-1362 (2007). [CrossRef] [PubMed]
  12. S.  Kawakami, T.  Kawashima, and T.  Sato, "Mechanism of shape formation of three-dimensional periodic nanostructures by bias sputtering," Appl. Phys. Lett.  74, 463-465 (1999). [CrossRef]
  13. Mehta, J. D. Brown, P. Srinivasan, R. C. Rumpf, and E. G. Johnson, "Spatially polarizing autocloned elements," Opt. Lett. 32, 1935-1937 (2007). [CrossRef] [PubMed]
  14. Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, "Photonic crystal polarisation splitters" Electron. Lett. 35, 1271-1272 (1999). [CrossRef]
  15. S. Kawakami, "Fabrication of submicrometer 3D periodic structure composed of Si/SiO2," Electron. Lett. 33, 1260-1261 (1997). [CrossRef]
  16. K. Yonezawa, Y. Kozawa, and S. Sato, "Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal," Opt. Lett. 31, 2151-2153 (2006). [CrossRef] [PubMed]
  17. R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Chen, A. Scherer, P. C. Sun, F. Xu, and Y. Fainman, "Design, abrication, and characterisation of form-birefringent multilayer polarising beam splitter," J. Opt Soc. Am. A 14, 1627-1636 (1997). [CrossRef]
  18. R. C. Tyan, P. C. Sun, A. Scherer, and Y. Fainman, "Polarizing beam splitter based on anisotropic spectral reflectivity characteristics of form-birefringent multilayer gratings," Opt. Lett. 21, 761-763 (1996). [CrossRef] [PubMed]
  19. F. Xu, R. C. Tyan, P. C. Sun, Y. Fainman, C. C. Cheng, and A. Scherer, "Fabrication, modeling, and characterization of form-birefringent nanostructures," Opt. Lett.  20, 2457- (1995). [CrossRef] [PubMed]
  20. W. Koechner, Solid State Laser Engineering (Springer, Berlin, 2005), Chap. 5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited