OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 15 — Jul. 21, 2008
  • pp: 10962–10967

Manipulating the directivity of antennas with metamaterial

Jingjing Zhang, Yu Luo, Hongsheng Chen, and Bae-Ian Wu  »View Author Affiliations

Optics Express, Vol. 16, Issue 15, pp. 10962-10967 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (10182 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we use spatially variant metamaterial substrate to manipulate the directivity of antennas. We show theoretically that by embedding a dipole at different locations inside this substrate, the emitted rays can be directed to different orientations as required. As a result, spatial multiplexing can be realized by carefully selecting proper parameters of this substrate. It can also be observed that the electric field received in this antenna system is enhanced when it is used for reception. Simulations based on finite element method are used to validate our theoretical analysis, showing a controllable high directive property. In order to simplify the physical realization process, we propose the reduced parameters for practical design and also study it with numerical simulations.

© 2008 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(350.4010) Other areas of optics : Microwaves
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: May 27, 2008
Revised Manuscript: June 25, 2008
Manuscript Accepted: June 26, 2008
Published: July 8, 2008

Jingjing Zhang, Yu Luo, Hongsheng Chen, and Bae-Ian Wu, "Manipulating the directivity of antennas with metamaterial," Opt. Express 16, 10962-10967 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Technol. 47, 2075 (1999). [CrossRef]
  2. D. R. Smith, WillieJ. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett. 84, 4184 (2000). [CrossRef] [PubMed]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001). [CrossRef] [PubMed]
  4. Z. Weng, Y. Jiao, G. Zhao, and F. Zhang, "Design and Experiment of One Dimension and Two Dimension Metamaterial Structures for Directive Emission," Progress In Electromagnetics Research-PIER 70, 199 (2007). [CrossRef]
  5. N. Engheta and R. W. Ziolkowski, "A positive future for double negative metamaterials," IEEE Microwave Theory Tech. 53, 1535 (2005). [CrossRef]
  6. A. Yu, F. Yang, and A. Z. Elsherbeni, "A Dual Band Circularly Polarized Ring Antenna Based on Composite Right and Left Handed Metamaterials," Progress In Electromagnetics Research-PIER 77, 285(2007).
  7. S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett. 89, 213902 (2002). [CrossRef] [PubMed]
  8. R. W. Ziolkowski, "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Phys. Rev. E 70, 046608 (2004). [CrossRef]
  9. J. Zhang, Y. Luo, S. Xi, H. Chen, L. Ran, B.-I. Wu, and J. A. Kong, "Directive emission obtained by coordinate transformation," Progress in Electromagnetics Research-PIER 81, 437 (2008). [CrossRef]
  10. R. W. Ziolkowski and A. Erentok, "Metamaterial-based efficient electrically small antennas," IEEE Trans. Antennas Propag. 54, 2113, July 2006. [CrossRef]
  11. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780 (2006). [CrossRef] [PubMed]
  12. F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, "Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect," Opt. Lett. 32, 1069 (2007). [CrossRef] [PubMed]
  13. D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express 14, 9794 (2006). [CrossRef] [PubMed]
  14. S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 036621 (2006). [CrossRef]
  15. H. Chen, B-I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic Wave Interactions with a Metamaterial Cloak," Phys. Rev. Lett. 99, 063903 (2007). [CrossRef] [PubMed]
  16. R. Weder, "A rigorous analysis of high-order electromagnetic invisibility cloaks," J. Phys. A: Math. Theor. 41, 065207 (2008). [CrossRef]
  17. Y. Huang, Y. Feng, and T. Jiang, "Electromagnetic cloaking by layered structure of homogeneous isotropic materials," Opt. Express 15, 11133 (2007). [CrossRef] [PubMed]
  18. A. V. Kildishev and E. E. Narimanov, "Impedance-matched hyperlens," Opt. Lett. 32, 3432 (2007). [CrossRef] [PubMed]
  19. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Designs for optical cloaking with high-order transformations," Opt. Express 16, 5444 (2008). [CrossRef] [PubMed]
  20. R. Weder, "The Boundary Conditions for Electromagnetic Invisibility Cloaks," arXiv 0801.3611 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 4.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited