OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 15 — Jul. 21, 2008
  • pp: 11032–11043

High-throughput, multiplexed pushbroom hyperspectral microscopy

M. E. Gehm, M. S. Kim, C. Fernandez, and D. J. Brady  »View Author Affiliations

Optics Express, Vol. 16, Issue 15, pp. 11032-11043 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (500 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a high-throughput hyperspectral microscope. The system replaces the slit of conventional pushbroom spectral imagers with a static coded aperture mask. We present the theoretical underpinnings of the aperture coded spectral engine and describe two proof-of-concept experimental implementations. Compared to a conventional pushbroom system, the aperture coded systems have 32 times greater throughput. Both systems have about a 1nm spectral resolution over the spectral range of 550–665nm. For the first design, the spatial resolution for the system is 5.4μm, while the spatial resolution for the second system ranges from 7.7μm to 1.54μm. We describe experimental results from proof-of-concept applications of the imager to hyperspectral microscopy.

© 2008 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(110.0110) Imaging systems : Imaging systems
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation

ToC Category:
Imaging Systems

Original Manuscript: April 18, 2008
Revised Manuscript: July 2, 2008
Manuscript Accepted: July 3, 2008
Published: July 9, 2008

Virtual Issues
Vol. 3, Iss. 8 Virtual Journal for Biomedical Optics

M. E. Gehm, M. S. Kim, C. Fernandez, and D. J. Brady, "High-throughput, multiplexed pushbroom hyperspectral microscopy," Opt. Express 16, 11032-11043 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Smith, D. Zhou, F. Harrison, H. Revercomb, A. Larar, A. Huang, and B. Huang, "Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft," Proc. SPIE 4151, 94-102 (2001). [CrossRef]
  2. C. Stellman, F. Olchowski, and J. Michalowicz, "WAR HORSE (wide-area reconnaissance: hyperspectral overhead real-time surveillance experiment)," Proc. SPIE 4379, 339-346 (2001). [CrossRef]
  3. T. Pham, F. Bevilacqua, T. Spott, J. Dam, B. Tromberg, and S. Andersson-Engles, "Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fouriertransform hyperspectral imaging," Appl. Opt. 39, 6487-6497 (2000). [CrossRef]
  4. R. Schultz, T. Nielsen, J. Zavaleta, R. Ruch, R. Wyatt, and H. Garner, "Hyperspectral imaging: A novel approach for microscopic analysis," Cytometry 43, 239 - 247 (2001). [CrossRef] [PubMed]
  5. M. Descour and E. Dereniak, "Computed-tomography imaging spectrometer: experimental calibration and reconstruction results," Appl. Opt. 34, 4817-4826 (1995). [CrossRef] [PubMed]
  6. P. Bernhardt, "Direct reconstruction methods for hyperspectral imaging with rotational spectrotomography," J. Opt. Soc. Am. A 12, 1884-1901 (1995). [CrossRef]
  7. J. Mooney, V. Vickers, M. An, and A. Brodzik, "High-throughput hyperspectral infrared camera," J. Opt. Soc. Am. A 14, 2951-2961 (1997). [CrossRef]
  8. A. Brodzik and J. Mooney, "Convex projections algorithm for restoration of limited-angle chromotomographic images," J. Opt. Soc. Am. A 16,246-257 (1999). [CrossRef]
  9. C. Snively, G. Katzenberger, and J. Lauterbach, "Fourier-transform infrared imaging using a rapid-scan spectrometer," Opt. Lett. 24, 1841-1843 (1999). [CrossRef]
  10. A. Wuttig and R. Riesenberg, "Sensitive Hadamard transform imaging spectrometer with a simple MEMS," Proc. SPIE 4881, 167-178 (2003). [CrossRef]
  11. M. Gehm, S. McCain, N. Pitsianis, D. Brady, P. Potuluri, and M. Sullivan, "Static two-dimensional aperture coding for multimodal, multiplex spectroscopy," Appl. Opt. 45, 2965-2974 (2006). [CrossRef] [PubMed]
  12. S. McCain, M. Gehm, Y. Wang, N. Pitsianis, and D. Brady, "Coded Aperture Raman Spectroscopy for Quantitative Measurements of Ethanol in a Tissue Phantom," Appl. Spect. 60, 663-671 (2006). [CrossRef]
  13. M. Gehm, R. John, D. Brady, R. Willett, and T. Schulz, "Single-shot compressive spectral imaging with a dualdisperser architecture," Opt. Express 15, 14013-14027 (2007). [CrossRef] [PubMed]
  14. A. Wagadarikar, R. John, R. Willett, and D. Brady, "Single disperser design for coded aperture snapshot spectral imaging," Appl. Opt. 47, 44-51 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited