OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 15 — Jul. 21, 2008
  • pp: 11083–11094

Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina

Enrique J. Fernández, Boris Hermann, Boris Považay, Angelika Unterhuber, Harald Sattmann, Bernd Hofer, Peter K. Ahnelt, and Wolfgang Drexler  »View Author Affiliations


Optics Express, Vol. 16, Issue 15, pp. 11083-11094 (2008)
http://dx.doi.org/10.1364/OE.16.011083


View Full Text Article

Enhanced HTML    Acrobat PDF (788 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Cellular in vivo visualization of the three dimensional architecture of individual human foveal cone photoreceptors is demonstrated by combining ultrahigh resolution optical coherence tomography and a novel adaptive optics modality. Isotropic resolution in the order of 2–3μm, estimated from comparison with histology, is accomplished by employing an ultrabroad bandwidth Titanium:sapphire laser with 140nm bandwidth and previous correction of chromatic and monochromatic ocular aberrations. The latter, referred to as pancorrection, is enabled by the simultaneous use of a specially designed lens and an electromagnetically driven deformable mirror with unprecedented stroke for correcting chromatic and monochromatic aberrations, respectively. The increase in imaging resolution allows for resolving structural details of distal elements of individual foveal cones: inner segment zones - myoids and ellipsoids - are differentiated from outer segments protruding into pigment epithelial processes in the retina. The presented technique has the potential to unveil photoreceptor development and pathogenesis as well as improved therapy monitoring of numerous retinal diseases.

© 2008 Optical Society of America

OCIS Codes
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics
(110.6955) Imaging systems : Tomographic imaging
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Imaging Systems

History
Original Manuscript: May 27, 2008
Revised Manuscript: July 6, 2008
Manuscript Accepted: July 7, 2008
Published: July 9, 2008

Virtual Issues
Vol. 3, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Enrique J. Fernández, Boris Hermann, Boris Považay, Angelika Unterhuber, Harald Sattmann, Bernd Hofer, Peter K. Ahnelt, and Wolfgang Drexler, "Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina," Opt. Express 16, 11083-11094 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11083


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. R. Taylor and J. E. Keeffe, "World blindness: a 21st century perspective," Br. J. Ophthalmol. 85, 261-266 (2001). [CrossRef] [PubMed]
  2. J. Porter, A. Guirao, I. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001). [CrossRef]
  3. F. J. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, "Ocular wavefront aberration statistics in a normal young population," Vision Res. 42, 1611-1617 (2002). [CrossRef] [PubMed]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafto, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  5. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999). [CrossRef]
  6. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kaertner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh resolution ophthalmic optical coherence tomography," Nature Med. 7, 502-507 (2001). [CrossRef] [PubMed]
  7. W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, "Enhanced visualization of macular pathology using ultrahigh resolution optical coherence tomography," Arch. Ophthalmol. 121, 695-706 (2003). [CrossRef] [PubMed]
  8. T. H. Ko, J. G. Fujimoto, J. S. Duker, L. A. Paunescu, W. Drexler, C. R. Baumal, C. A. Puliafito, E. Reichel, A. H. Rogers, and J. S. Schuman, "Comparison of ultrahigh and standard resolution optical coherence tomography for imaging macular hole pathology and repair," Ophthalmology 111, 2033-2043 (2004). [CrossRef] [PubMed]
  9. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004). [CrossRef] [PubMed]
  10. F. Fercher, C. K. Hitzenberger, G. Kamp, and S.Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Comm. 117, 43-48 (1995). [CrossRef]
  11. M. A. Choma, M. V. Sarunic, C.H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183 [CrossRef] [PubMed]
  12. M. Wojtkowski, R. A. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In-vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). [CrossRef] [PubMed]
  13. R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-8-889. [CrossRef] [PubMed]
  14. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). [CrossRef] [PubMed]
  15. Y. Zhang, J. Rha, R. Jonnal, and D. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-12-4792. [CrossRef] [PubMed]
  16. R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-21-8532. [CrossRef] [PubMed]
  17. E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005). [CrossRef] [PubMed]
  18. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4380. [CrossRef] [PubMed]
  19. R. J. Zawadzki, S. Choi, S. M. Jones, S. Oliver, and J. S. Werner, "Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions," J. Opt. Soc. Am. A 24, 1373-1383 (2007). [CrossRef]
  20. D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, "Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy," Opt. Express 14, 3345-3353 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-8-3345. [CrossRef] [PubMed]
  21. C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, "Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging," J. Opt. Soc. Am. A 24, 1327-1336 (2007). [CrossRef]
  22. M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, "Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography," Opt Lett. 33, 22-24 (2008). [CrossRef]
  23. E. J. Fernández and W. Drexler, "Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography," Opt. Express 13, 8184-8197 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-20-8184. [CrossRef] [PubMed]
  24. E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-6213. [CrossRef] [PubMed]
  25. E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-8900. [CrossRef] [PubMed]
  26. P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000). [CrossRef]
  27. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1955 (1994). [CrossRef]
  28. E. J. Fernández and P. Artal, "Membrane deformable mirror for adaptive optics: performance limits in visual optics," Opt. Express 11, 1056-1069 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-9-1056. [CrossRef] [PubMed]
  29. E. J. Fernández, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-400. [CrossRef] [PubMed]
  30. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, "Compact, low-cost TiAl2O3 laser for in vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 28, 905-907 (2003). [CrossRef] [PubMed]
  31. ANSI Z 136.1, Safe Use of Lasers, (American National Standard Institute, New York, 2000).
  32. W. Krebs and I. Krebs, Primate Retina and Choroid: Atlas of Fine Structure in Man and Monkey, (Springer Verlag, New York, 1991).
  33. Q. V. Hoang, R. A. Linsenmeier, C. K. Chung, and C. A. Curcio, "Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation," Vis. Neurosci. 19, 395-407 (2002). [CrossRef]
  34. N. W. Roberts, "The optics of vertebrate photoreceptors: anisotropy and form birefringence," Vision Res. 46, 3259-3266(2006). [CrossRef] [PubMed]
  35. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990). [CrossRef] [PubMed]
  36. B. Borwein, D. Borwein, J. Medeiros, and J. W. McGowan, "The ultrastructure of monkey foveal photoreceptors, with special reference to the structure, shape, size, and spacing of the foveal cones," Am. J. Anat. 159, 125-146 (1980). [CrossRef] [PubMed]
  37. Roorda and D. R. Williams, "Optical fiber properties of individual human cones," J. Vis. 2, 404-412 (2002). [CrossRef]
  38. R. H. Steinberg, "Research update: report from a workshop on cell biology of retina detachment," Exp. Eye Res. 43, 695-706 (1986). [CrossRef] [PubMed]
  39. C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, and R. E. Kalina, "Distribution of cones in human and monkey retina: individual variability and radial asymmetry," Science 236, 579-582 (1987). [CrossRef] [PubMed]
  40. J. J. Plantner, C. Jiang, and A. Smine, "Increase in interphotoreceptor matrix gelatinase A (MMP-2) associated with age-related macular degeneration," Exp. Eye. Res. 67, 637-645 (1998). [CrossRef]
  41. R. H. Steinberg, S. K. Fisher, and D. H. Anderson, "Disc morphogenesis in vertebrate photoreceptors," J. Comp. Neurol. 190, 501-508 (1980). [CrossRef] [PubMed]
  42. K. O. Long, S. K. Fisher, R. N. Fariss, and D. H. Anderson, "Disc shedding and autophagy in the cone-dominant ground squirrel retina," Exp. Eye Res. 43, 193-205 (1986). [CrossRef] [PubMed]
  43. W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, and D. T. Miller, "Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography," Opt. Express 16, 6486-6501 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6486. [CrossRef] [PubMed]
  44. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, "Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction," Opt. Express 16, 8126-8143 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-11-8126. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (5249 KB)      QuickTime
» Media 2: AVI (3316 KB)      QuickTime
» Media 3: AVI (3731 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited