OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 15 — Jul. 21, 2008
  • pp: 11095–11102

Ultrahigh-Q Nanocavity with 1D Photonic Gap

M. Notomi, E. Kuramochi, and H. Taniyama  »View Author Affiliations


Optics Express, Vol. 16, Issue 15, pp. 11095-11102 (2008)
http://dx.doi.org/10.1364/OE.16.011095


View Full Text Article

Enhanced HTML    Acrobat PDF (702 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recently, various wavelength-sized cavities with theoretical Q values of ~108 have been reported, however, they all employ 2D or 3D photonic band gaps to realize strong light confinement. Here we numerically demonstrate that ultrahigh-Q (2.0×108) and wavelength-sized (Veff ~1.4(λ/n)3) cavities can be achieved by employing only 1D periodicity.

© 2008 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(250.5300) Optoelectronics : Photonic integrated circuits
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: June 4, 2008
Revised Manuscript: July 1, 2008
Manuscript Accepted: June 23, 2008
Published: July 9, 2008

Citation
M. Notomi, E. Kuramochi, and H. Taniyama, "Ultrahigh-Q Nanocavity with 1D Photonic Gap," Opt. Express 16, 11095-11102 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11095


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003). [CrossRef] [PubMed]
  2. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007). [CrossRef] [PubMed]
  3. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005). [CrossRef] [PubMed]
  4. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  5. H-Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067 (2004). [CrossRef]
  6. K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007). [CrossRef] [PubMed]
  7. M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Mater. 3, 211-219 (2004), and references therein. [CrossRef] [PubMed]
  8. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678 (2005). [CrossRef] [PubMed]
  9. T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip," Opt. Lett. 30, 2575-2577 (2005). [CrossRef] [PubMed]
  10. M. Notomi and S. Mitsugi, "Wavelength conversion via dynamic refractive index tuning of a cavity," Phys. Rev. A 73, 051803(R) (2006). [CrossRef]
  11. M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, "Nonlinear and adiabatic control of high-Q photonic crystal nanocavities," Opt. Express 15, 17458-17481 (2007). [CrossRef] [PubMed]
  12. B-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005). [CrossRef]
  13. Y. Takahashi, H. Hagino, Y. Tanaka, B-S. Song, T. Asano, and S. Noda, "High-Q nanocavity with a 2-ns photon lifetime," Opt. Express 15, 17206 (2007). [CrossRef] [PubMed]
  14. E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006). [CrossRef]
  15. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007). [CrossRef]
  16. R. Herrmann, T. Sunner, T. Hein, A. Loffler, M. Kamp, and A. Forchel, "Ultrahigh-quality photonic crystal cavity in GaAs," Opt. Lett. 31, 1229-1231 (2006). [CrossRef] [PubMed]
  17. H-Y. Ryu, M. Notomi, and Y-H. Lee, "High quality-factor and small mode-volume hexapole modes in photonic crystal slab nano-cavities," Appl. Phys. Lett. 83, 4294-4296 (2003). [CrossRef]
  18. T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, "Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode," Appl. Phys. Lett. 91, 021110 (2007). [CrossRef]
  19. T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, "Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities," Opt. Express. 15, 7826-7839 (2007). [CrossRef] [PubMed]
  20. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides, " Nature 390, 143 (1997). [CrossRef]
  21. P. Velha, E. Picard, T. Charvolin, E. Hadji, J. C. Rodier, P. Lalanne, and D. Peyrade, "Ultra-High Q/V Fabry-Perot microcavity on SOI substrate," Opt. Express 15, 16090 (2007). [CrossRef] [PubMed]
  22. D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003). [CrossRef] [PubMed]
  23. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001). [CrossRef] [PubMed]
  24. K. Inoshita and T. Baba, "Lasing at bend, branch and intersection of photonic crystal waveguides," Electron. Lett. 39, 844 (2003). [CrossRef]
  25. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y. Ryu, "Waveguides, resonators, and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004). [CrossRef] [PubMed]
  26. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850-856 (2002). [CrossRef]
  27. E. Kuramochi, T. Tanabe, H. Taniyama, A. Shinya, and M. Notomi, "Ultrahigh-Q Nanocavities Realized by Using a Very Narrow Photonic Crystal with Built-in Air Slots," CLEO 2008, CThCC3, San Jose, USA.
  28. Y. Tanaka, T. Asano, and S. Noda, "Design of multi heterostructure nanocavity with Q factor of one billion," in Extended abstracts of the 54th spring meeting of the Japan Society of Applied Physics, 29a-ZB-7, p.1129, (2007).
  29. M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, "Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs," Phys. Rev. Lett. 97, 023903 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited