OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 15 — Jul. 21, 2008
  • pp: 11169–11175

DPSK signal regeneration using a fiber-based amplitude regenerator

Masayuki Matsumoto and Hironobu Sakaguchi  »View Author Affiliations

Optics Express, Vol. 16, Issue 15, pp. 11169-11175 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (138 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An experiment of an all-optical DPSK-signal regeneration is reported. In the regenerator, incoming DPSK signals are first demodulated to on-off-keying signals, then amplitude-regenerated by a 2R regenerator, and subsequently used as control pulses for phase remodulation of clock pulses in an all-optical phase modulator. Penalty-free operation with reduced amplitude noise is demonstrated by the use of a two-stage fiber-based cascaded 2R amplitude regenerator in bidirectional configuration.

© 2008 Optical Society of America

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.5060) Fiber optics and optical communications : Phase modulation
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(230.1150) Optical devices : All-optical devices

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 5, 2008
Revised Manuscript: July 7, 2008
Manuscript Accepted: July 9, 2008
Published: July 10, 2008

Masayuki Matsumoto and Hironobu Sakaguchi, "DPSK signal regeneration using a fiber-based amplitude regenerator," Opt. Express 16, 11169-11175 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. -C. Simon, M. Gay, L. Bramerie, V. Roncin, M. Joindot, T. Chartier, S. Lobo, G. Girault, Q. T. Le, T. N. Nguyen, and M. N. Ngo, "Long distance transmission using optical regeneration," in 2008 Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2008), paper OWS1. [PubMed]
  2. K. P. Ho, Phase-Modulated Optical Communication Systems (Springer, 2005).
  3. K. Croussore, I. Kim, C. Kim, Y. Han, and G. Li, "Phase-and-amplitude regeneration of differential phase-shift keyed signals using a phase-sensitive amplifier," Opt. Express 14, 2085-2094 (2006). [CrossRef] [PubMed]
  4. A. Bogris and D. Syvridis, "RZ-DPSK signal regeneration based on dual-pump phase-sensitive amplfication in fibers," IEEE Photon. Technol. Lett. 18, 2144-2146 (2006). [CrossRef]
  5. I. Kang, C. Dorrer, L. Zhang, M. Rasras, L. Buhl, A. Bhardwaj, S. Cabot, M. Dinu, X. Liu, M. Cappuzzo, L. Gomez, A. Wong-Foy, Y. F. Chen, S. Patel, D. T. Neilson, J. Jaques, and C. R. Giles, "Regenerative all optical wavelength conversion of 40-Gb/s DPSK signals using a semiconductor optical amplifier Mach-Zehnder interferometer," 2005 European Conference on Optical Communication, paper Th 4.3.3 (2005). [CrossRef]
  6. P. Vorreau, A. Marculescu, J. Wang, G. Böttger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006). [CrossRef]
  7. R. Elschner, A. M. de Melo, C. -A. Bunge, and K. Petermann, "Noise suppression properties of an interferometer-based regenerator for differential phase-shift keying data," Opt. Lett. 32, 112-114 (2007). [CrossRef]
  8. M. Matsumoto, "A fiber-based all-optical 3R regenerator for DPSK signals," IEEE Photon. Technol. Lett. 19, 273-275 (2007). [CrossRef]
  9. V. S. Grigoryan, M. Shin, P. Devgan, and P. Kumar, "Mechanism of SOA-based regenerative amplification of phase-noise degradaed DPSK signals," Electron. Lett. 41, 1021-1022 (2005). [CrossRef]
  10. P. Johannisson, G. Adolfsson, and M. Karlsson, "Suppression of phase error in differential phase-shift keying data by amplitude regeneration," Opt. Lett. 31, 1385-1387 (2006). [CrossRef] [PubMed]
  11. C. C. Wei and J. J. Chen, "Convergence of phase noise in DPSK transmission systems by novel phase noise averagers," Opt. Express,  14, 9584-9593 (2006). [CrossRef] [PubMed]
  12. E. S. Awad, P. S. Cho, and J. Goldhar, "All-optical re-phasing, re-shaping, and re-amplification of RZ-DPSK data," in 2007 Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2007), paper JThA53. [CrossRef] [PubMed]
  13. A. G. Striegler, M. Meissner, K. Cvecek, K. Spnsel, G. Leuchs, and B. Schmauss, "NOLM-based RZ-DPSK signal regeneration," IEEE Photon. Technol. Lett. 17, 639-641 (2005). [CrossRef]
  14. M. Matsumoto, "Regeneration of RZ-DPSK signals by fiber-based all-optical regenerators," IEEE Photon. Technol. Lett. 17, 1055-1057 (2005). [CrossRef]
  15. S. Boscolo, R. Bhamber, and S. K. Turitsyn, "Design of Raman-based nonlinear loop mirror for all-optical 2R regeneration of differential phase-shift-keying transmission," IEEE J. Quantum Electron. 42, 619-624 (2006). [CrossRef]
  16. K. Croussore and G. Li, "Amplitude regeneration of RZ-DPSK signals based on four-wave mixing in fibre," Electron. Lett. 43, 177-178 (2007). [CrossRef]
  17. K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchujkov, B. Schmauss, and G. Leuchs, "2R-regeneration of an 80-Gb/s RZ-DQPSK signal by a nonlinear amplifying loop mirror," IEEE Photon. Technol. Lett. 19, 1475-1477 (2007). [CrossRef]
  18. M. Matsumoto, "A fiber-based all-optical regenerator for DQPSK signals," 2007 European Conference on Optical Communication, paper P069 (2007). [CrossRef]
  19. Z. Zheng, L. An, Z. Li, X. Zhao, and X. Liu, "All-optical regeneration of DQPSK/QPSK signals based on phase-sensitive amplification," Opt. Commun. 281, 2755-2759 (2008). [CrossRef]
  20. C. Schmidt-Langhorst, R. Ludwig, M. Galili, B. Huettl, F. Futami, S. Watanabe, and C. Schubert, "160 Gbit/s all-optical OOK to DPSK in-line format conversion," 2006 European Conference on Optical Communication, paper Th4.3.5 (2006).
  21. M. Matsumoto, Y. Shimada, and H. Sakaguchi, "Wavelength-shift-free SPM-based 2R regeneration by bidirectional use of a highly nonlinear fiber," in 2007 Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2007), paper OME5. [CrossRef] [PubMed]
  22. L. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, "Design scaling rules for 2R-optical self-phase modulation-based regenerators," Opt. Express 15, 5100-5113 (2007). [CrossRef] [PubMed]
  23. T. -H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004). [CrossRef]
  24. T. Tanemura, J. H. Lee, D. Wang, K. Katoh, and K. Kikuchi, "Polarization-insensitive 160-Gb/s wavelength converter with all-optical repolarizing function using circular-birefringence highly nonlinear fiber," Opt. Express 14, 1408-1412 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited