OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 15 — Jul. 21, 2008
  • pp: 11203–11215

Antenna-mediated back-scattering efficiency in infrared near-field microscopy

M. Brehm, A. Schliesser, F. Čajko, I. Tsukerman, and F. Keilmann  »View Author Affiliations


Optics Express, Vol. 16, Issue 15, pp. 11203-11215 (2008)
http://dx.doi.org/10.1364/OE.16.011203


View Full Text Article

Enhanced HTML    Acrobat PDF (728 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We evaluate the efficiency of back-scattering, η B , from a standard cantilevered AFM probe contacting a flat sample, and also the back-scattering phase. Both quantities are spectroscopically determined over a broad 9-12 μm wavelength range by coherent frequency-comb Fourier-transform spectroscopy (c-FTIR). While Fresnel reflectivity contributes a key factor with the SiC Reststrahlen edge at 975 cm-1 as previously documented, we observe spectral effects ascribable to antenna resonances involving the shaft, cantilever, and sample. Most conspicuous is strong (η B = 13%), resonant back-scattering at 955 cm-1, a frequency that suggests the involvement of surface-phonon-polariton excitation, when the tip probes the area near a SiC/Au boundary. The probe’s antenna properties are elucidated by numerically simulating the near fields, the fields in the radiation zone, and the far-field scattering distributions. The simulations are performed for a realistic tip/sample configuration with a three-orders-of-magnitude scale variation. The results suggest a standing-surface-plasmon-polariton pattern along the shaft, as well as far-field antenna lobes that change with the sample’s dielectric properties.

© 2008 Optical Society of America

OCIS Codes
(180.5810) Microscopy : Scanning microscopy
(240.6490) Optics at surfaces : Spectroscopy, surface
(290.1350) Scattering : Backscattering
(290.5870) Scattering : Scattering, Rayleigh
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6310) Spectroscopy : Spectroscopy, heterodyne

ToC Category:
Microscopy

History
Original Manuscript: May 21, 2008
Revised Manuscript: June 23, 2008
Manuscript Accepted: June 23, 2008
Published: July 11, 2008

Virtual Issues
Vol. 3, Iss. 8 Virtual Journal for Biomedical Optics

Citation
M. Brehm, A. Schliesser, F. Cajko, I. Tsukerman, and F. Keilmann, "Antenna-mediated back-scattering efficiency in infrared near-field microscopy," Opt. Express 16, 11203-11215 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11203


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Keilmann and R. Hillenbrand, "Near-field microscopy by elastic light scattering from a tip," Phil. Trans. Roy. Soc. A 362, 787-805 (2004). [CrossRef]
  2. T. Taubner, R. Hillenbrand, and F. Keilmann, "Performance of visible and mid-infrared scattering-type near-field optical microscopes," J. Microsc. 210, 311-314 (2003). [CrossRef] [PubMed]
  3. F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning interferometric apertureless microscopy: optical imaging at 10 Angstrom resolution," Science 269, 1083-1085 (1995). [CrossRef] [PubMed]
  4. B. Knoll and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399, 134-137 (1999). [CrossRef]
  5. R. Hillenbrand and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett. 85, 3029-3032 (2000). [CrossRef] [PubMed]
  6. B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182, 321-328 (2000). [CrossRef]
  7. B. Knoll and F. Keilmann, "Infrared conductivity mapping for nanoelectronics," Appl. Phys. Lett. 77, 3980-3982 (2000). [CrossRef]
  8. R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometre scale," Nature 418, 159-162 (2002). [CrossRef] [PubMed]
  9. T. Taubner, F. Keilmann, and R. Hillenbrand, "Nanomechanical resonance tuning and phase effects in optical near-field interaction," Nanolett. 4, 1669-1672 (2004). [CrossRef]
  10. T. Taubner, R. Hillenbrand, and F. Keilmann, "Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy," Appl. Phys. Lett. 85, 5064-5066 (2004). [CrossRef]
  11. Z. H. Kim, B. Liu, and S. R. Leone, "Nanometer-scale optical imaging of epitaxially grown GaN and InN islands using apertureless near-field microscopy," J. Chem. Phys. B 109, 8503-8508 (2005).
  12. M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution," NanoLett. 6, 1307-1310 (2006). [CrossRef]
  13. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, "Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy," Opt. Express 15, 8550 (2007). [CrossRef] [PubMed]
  14. J. Wessel, "Surface-enhanced optical microscopy," J. Opt. Soc. Am. B 2, 1538-1540 (1985). [CrossRef]
  15. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202, 72-76 (2001). [CrossRef] [PubMed]
  16. C. F. Bohren and D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).
  17. F. Keilmann, C. Gohle, and R. Holzwarth, "Time-domain mid-infrared frequency-comb spectrometer," Opt. Lett. 29, 1542-1544 (2004). [CrossRef] [PubMed]
  18. A. Schliesser, M. Brehm, D. W. v. d. Weide, and F. Keilmann, "Frequency-comb infrared spectrometer for rapid, remote chemical sensing," Opt. Express 13, 9029-9038 (2005). [CrossRef] [PubMed]
  19. M. Brehm, A. Schliesser, and F. Keilmann, "Spectroscopic near-field microscopy using frequency combs in the mid-infrared," Opt. Express 14, 11222-11233 (2006). [CrossRef] [PubMed]
  20. L. M. Matarrese and K. M. Evenson, "Improved coupling to infrared whisker diodes by use of antenna theory," Appl. Phys. Lett. 17, 8-10 (1970). [CrossRef]
  21. B. Twu and S. E. Schwarz, "Mechanisms and properties of point-contact metal-insulator-metal diode detectors at 10.6 µm," Appl. Phys. Lett. 25, 595-598 (1974). [CrossRef]
  22. B. Twu and S. E. Schwarz, "Properties of infrared cat-whisker antennas near 10.6 µm," Appl. Phys. Lett. 26, 672-675 (1975). [CrossRef]
  23. S. Wang, "Antenna properties and operation of metal-barrier-metal devices in the infrared and visible regions," Appl. Phys. Lett. 28, 303-305 (1976). [CrossRef]
  24. D. B. Rutledge, S. E. Schwarz, and A. T. Adams, "Infrared and submillimetre antennas," Infr. Phys. 18, 713-729 (1978). [CrossRef]
  25. T. Kurosawa, "Properties of the S/N ratio of the beat note in frequency-mixing using the W-Ni point contact diode at 32 THz," Jp. J. Appl. Phys. 27, 55-61 (1988). [CrossRef]
  26. M. Völcker, W. Krieger, and H. Walther, "Laser-frequency mixing in a scanning force microscope and its application to detect local conductivity," J. Vac. Sci. Technol. B 12, 2129-2132 (1994). [CrossRef]
  27. T. Gutjahr-Löser, A. Hornsteiner, W. Krieger, and H. Walther, "Laser-frequency mixing in a scanning tunneling microscope at 1.3 µm," J. Appl. Phys. 85, 6331-6336 (1999). [CrossRef]
  28. C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, and G. D. Boreman, "Measurement of the resonant length of infrared dipole antennas," Inf. Phys. Technol. 41, 271-281 (2000). [CrossRef]
  29. S. V. Chepurov, V. M. Klementyev, S. A. Kuznetsov, V. S. Pivtsov, and V. F. Zakharyash, "Experimental investigations of Schottky barrier diodes as nonlinear elements in 800-nm-wavelength region," Appl. Phys. B 79, 33-38 (2004). [CrossRef]
  30. B. Knoll and F. Keilmann, "Mid-infrared scanning near-field optical microscope resolves 30 nm," J. Microsc. 194, 512-515 (1999). [CrossRef]
  31. H. F. Hamann, A. Gallagher, and D. J. Nesbitt, "Enhanced sensitivity near-field scanning optical microscopy at high spatial resolution," Appl. Phys. Lett. 73, 1469-1471 (1998). [CrossRef]
  32. M. Brehm, Infrarot-Mikrospektroskopie mit einem Nahfeldmikroskop (Verlag Dr. Hut, Dissertation Technische Universität, München, 2007).
  33. A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, "Near-field spectral effects due to electromagnetic surface excitations," Phys. Rev. Lett. 85, 1548-1551 (2000). [CrossRef] [PubMed]
  34. Y. de Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, "Thermal radiation scanning tunneling microscopy," Nature 444, 740743 (2006).
  35. Z. Schlesinger, B. C. Webb, and A. J. Sievers, "Attenuation and coupling of far-infrared surface plasmons," Solid-State Commun. 39, 1035-1039 (1981). [CrossRef]
  36. A. Huber, N. Ocelic, D. Kazantsev, and R. Hillenbrand, "Near-field imaging of mid-infrared surface phonon polariton propagation," Appl. Phys. Lett. 87, 81103-81101 - 81103-81103 (2005). [CrossRef]
  37. D. A. G. Bruggemann, Annalen der Physik 24, 636 (1935).
  38. M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, "Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging," Science 318, 1750-1753 (2007). [CrossRef] [PubMed]
  39. R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, "Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe," Appl. Phys. Lett. 83, 368-370 (2003). [CrossRef]
  40. R. Hillenbrand and F. Keilmann, "Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy," Appl. Phys. B 73, 239-243 (2001). [CrossRef]
  41. J. Renger, S. Grafstrom, L. M. Eng, and R. Hillenbrand, "Resonant light scattering by near-field-induced phonon polaritons," Phys. Rev. B 71, 075410 (2005). [CrossRef]
  42. R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, C. C. Neacsu, and M. B. Raschke, "Resonant plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips," Opt. Express 14, 2921-2931 (2006). [CrossRef] [PubMed]
  43. R. Esteban, R. Vogelgesang, and K. Kern, "Simulation of optical near and far fields of dielectric apertureless scanning probes," Nanotechnology 17, 475-482 (2006). [CrossRef]
  44. J. Jin, The finite element method in electromagnetics (J. Wiley&Sons, New York, 1993).
  45. D. Mehtani, N. Lee, R. D. Hartschuh, A. Kisliuk, M. D. Foster, A. P. Sokolov, F. �?ajko, and I. Tsukerman, "Optical properties and enhancement factors of the tips for apertureless near-field optics," J. Opt. A 8, S183-S190 (2006). [CrossRef]
  46. I. Tsukerman, Computational methods for nanoscale applications (Springer Verlag, 2008).
  47. J. Dai, F. �?ajko, I. Tsukerman, and M. I. Stockman, "Electrodynamic effects in plasmonic nanolenses," Phys. Rev. B 77, 115419 (2008). [CrossRef]
  48. J. H. Weaver, "Optical properties of Rh, Pd, Ir, and Pt," Phys. Rev. B 11, 1416-1425 (1975). [CrossRef]
  49. P. B. Johnson and R. W. Christy, "Optical properties of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  50. M. Hofmann, A. Zwyietz, K. Karch, and F. Bechstedt, "Lattice dynamics of SiC polytypes within the bond-charge model," Phys. Rev. B 50, 13401-13411 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited