OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 15 — Jul. 21, 2008
  • pp: 11300–11309

Laser Induced Forward Transfer of metals by temporally shaped femtosecond laser pulses

A. Klini, P. A. Loukakos, D. Gray, A. Manousaki, and C. Fotakis  »View Author Affiliations

Optics Express, Vol. 16, Issue 15, pp. 11300-11309 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (11202 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Temporally shaped, femtosecond laser pulses have been used for controlling the size and the morphology of micron-sized metallic structures obtained by using the Laser Induced Forward Transfer (LIFT) technique.We report the effect of pulse shaping on the size and morphology of the deposited structures of Au, Zn, Cr on a function of the pulse separation time Δt (from 0 to 10 ps) of double pulses of variable intensities generated by using a liquid crystal spatial light modulator (SLM). The observed differences in size and morphology are correlated with the outcome of pump-probe experiments for the study of electron-phonon scattering dynamics and subsequent energy transfer processes to the bulk in the different metals employed. We propose that in metals with weak electron-lattice coupling, the electron ballistic motion and the resulting fast electron scattering at the film surface, as well as the internal electron thermalization process are crucial to the morphology and size of the transferred material. Therefore, temporal shaping within the corresponding time scales of these processes may be used for tailoring the features of the metallic structures obtained by LIFT.

© 2008 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(220.4000) Optical design and fabrication : Microstructure fabrication
(320.5540) Ultrafast optics : Pulse shaping
(320.7150) Ultrafast optics : Ultrafast spectroscopy

ToC Category:
Laser Micromachining

Original Manuscript: May 13, 2008
Revised Manuscript: June 13, 2008
Manuscript Accepted: June 25, 2008
Published: July 11, 2008

A. Klini, P. A. Loukakos, D. Gray, A. Manousaki, and C. Fotakis, "Laser induced forward transfer of metals by temporally shaped femtosecond laser pulses," Opt. Express 16, 11300-11309 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, "Microdeposition of metal and oxide structures using ultrashort laser pulses," Appl. Phys. A 66, 579-582 (1998). [CrossRef]
  2. D. Toet, P. M. Smith, T. W. Sigmon, and M. O. Thompson, "Experimental and numerical investigations of a hydrogen-assisted laser-induced materials transfer procedure," J. Appl. Phys. 87, 3537-3546 (2000). [CrossRef]
  3. Li Yang, Ching-yue Wang, Xiao-chang Ni, Zhi-junWang, Wei Jia, and Lu Chai, "Microdroplet deposition of copper film by femptosecond laser-induced forward transfer," Appl. Phys. Lett. 89, 161110-3 (2006). [CrossRef]
  4. E. Fogarassy, C. Fuchs, F. Kerherve, S. Hauchecorne, and J. Perriere, "Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO super-conducting thin films," J. Appl. Phys. 66, 457-459 (1989). [CrossRef]
  5. V. Dinca, E. Kasotakis, J. Catherine, A. Mourka, A. Mitraki, A. Popescu, M. Dinescu, M. Farsari, and C. Fotakis, "Development of peptide-based patterns by laser transfer," Appl. Surf. Sci. 254, 1160-1163 (2007). [CrossRef]
  6. K. D. Kyrkis, A. A. Andreadaki, D. G. Papazoglou, and I. Zergioti, "Direct Transfer and Microprinting of Functional Materials by Laser Induced Forward Transfer Process" in Recent Advances In Laser Processing of Materials, J. Perriere, E. Millon, E. Fogarassy (Elsevier, 2006), pp. 213-241.
  7. I. Zergioti, D. G. Papazoglou, A. Karaiskou, C. Fotakis, E. Gamaly, and A. Rode, "A comparative schlieren imaging study between ns and sub-ps forward tranfer of Cr," Appl. Surf. Sci. 208-209, 177-180 (2003). [CrossRef]
  8. D. P. Banks, C. Grivas, I. Zergioti, and R. W. Eason, "Ballistic Laser-Assisted Solid Transfer (BLAST) from a Thin Film Precursor," Opt. Express 16, 3249-3254 (2008). [CrossRef] [PubMed]
  9. H. E. Elsayed-Ali, T. B. Norris, M. A. Pessot, and G. A. Mourou, "Time-resolved observation of electron-phonon relaxation in copper,"Phys. Rev. Lett. 58, 1212-1215 (1987). [CrossRef] [PubMed]
  10. V. Schmidt, W. Husinsky, and G. Betz, "Dynamics of Laser Desorption and Ablation of Metals at the Threshold on the Femtosecond Time Scale," Phys. Rev. Lett. 85, 3516-3519 (2000). [CrossRef] [PubMed]
  11. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, "Dynamic temporal pulse shaping in advanced ultrafast laser material processing," Appl. Phys. A 77, 265-269 (2003).
  12. M. E. Povarnitsyn, T. E. Itina, K. V. Khishchenko, and P. R. Levashov, "Material decomposition mechanisms in femtosecond laser interactions with metals," Phys. Rev. B 75, 235414-5 (2007). [CrossRef]
  13. J. Bohandy, B. F. Kim, and F. J. Adrian, "Metal deposition from a supported metal film using an excimer laser," J. Appl. Phys. 60, 1538-1539 (1986). [CrossRef]
  14. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998). [CrossRef] [PubMed]
  15. E. Papastathopoulos, M. Strehle, and G. Gerber, "Optimal control of femtosecond multiphoton double ionization of atomic calcium," Chem. Phys. Lett. 408, 65-70 (2005). [CrossRef]
  16. R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164-166 (2000). [CrossRef] [PubMed]
  17. N. Jegenyes, Z. Toth, B. Hopp, J. Klebniczki, Z. Bor, and C. Fotakis, "Femtosecond pulsed laser deposition of diamond-like carbon film: The effect of double laser pulses," Appl. Surf. Sci. 252, 4667-4671 (2006). [CrossRef]
  18. J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, "Electron and lattice dynamics following optical excitation of metals," Chem. Phys. 251, 237-258 (2000). [CrossRef]
  19. M. Hase, K. Ishioka, J. Demsar, K. Ushida, and M. Kitajima, "Ultrafast dynamics of coherent optical phonons and nonequilibrium electrons in transition metals," Phys. Rev. B 71, 184301-9 (2005). [CrossRef]
  20. H. Hirori, T. Tachizaki, O. Matsuda, and O. B. Wright, "Electron dynamics in chromium probed with 20-fs optical pulses," Phys. Rev. B 68, 113102-4 (2003). [CrossRef]
  21. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Scien. Instrum. 71, 1929-1960 (2000). [CrossRef]
  22. B. Schmidt, M. Hacker, G. Stobrawa, and T. Feurer; "LAB2-A virtual femtosecond laser lab," http://www.lab2.de
  23. M. M. Wefers and K. A. Nelson, "Analysis of programmable ultrashort waveform generation using liquid-crystal spatial light modulators," J. Opt. Soc. Am. B 12, 1343-1362 (1995). [CrossRef]
  24. T. Tanabe, F. Kannari, F. Korte, J. Koch, and B. Chichkov, "Influence of spatiotemporal coupling induced by an ultrashort laser pulse shaper on a focused beam profile," Appl. Opt. 44, 1092-1098 (2005). [CrossRef] [PubMed]
  25. C. Germain and Y. Y. Tsui, "Femtosecond Laser Induced Forward Transfer of Materials," icmens, p. 44, 2003 International Conference on MEMS, NANO and Smart Systems (ICMENS'03), 2003.
  26. D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, "Nanodroplets deposited in microarrays by femtosecond Ti:Sapphire laser-induced forward transfer," Appl. Phys. Lett. 89, 193107-3 (2006). [CrossRef]
  27. "Periodic Table of Elements," http://environmentalchemistry.com/yogi/periodic/
  28. D. G. Papazoglou, A. Karaiskou, I. Zergioti, and C. Fotakis, "Shadowgraphic imaging of the sub-ps laser-induced forward transfer process," Appl. Phys. Lett. 81, 1594-1596 (2002). [CrossRef]
  29. P. A. Loukakos, C. Kalpouzos, I. E. Perakis, Z. Hatzopoulos, M. Sfendourakis, G. Kostantinidis, and C. Fotakis, "Role of As precipitates on ultrafast electron trapping in low-temperature-grown GaAs and AlGaAs alloys," J. Appl. Phys. 91, 9863-9867 (2002). [CrossRef]
  30. N. Del Fatti, R. Bouffanais, F. Vallée, and C. Flytzanis, "Nonequilibrium Electron Interactions in Metal Films," Phys. Rev. Lett. 81, 922-925 (1998). [CrossRef]
  31. C. Voisin, D. Christofilos, P. A. Loukakos, N. Del Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, and M. Broyer, "Ultrafast electron-electron scattering and energy exchanges in noble-metal nanoparticles," Phys. Rev. B 69, 195416-9 (2004). [CrossRef]
  32. M. Lisowski, P. A. Loukakos, U. Bovensiepen, J. Stäahler, C. Gahl, and M. Wolf, "Ultra-fast dynamics of electron thermalization, cooling and transport effects in Ru(001)," Appl. Phys. A 78, 165-176 (2004).
  33. H. Dachraoui and W. Husinsky, "Fast electronic and thermal processes in femtosecond laser ablation of Au," Appl. Phys. Lett. 89, 104102-3 (2006). [CrossRef]
  34. M. I. Kaganov, I. M. Lifshitz, and L. V. Tanatarov, "The electron-lattice relaxation," Zh. Eksp. Teor. Fiz. 31, 232 (1956) [Sov. Phys. JETP 4, 173 (1957)].
  35. Z. Lin, L. V. Zhigilei, and V. Celli, "Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium," Phys. Rev. B 77, 075133-17 (2008), and references therein. [CrossRef]
  36. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, "Laser ablation of dielectrics with temporally shaped femtosecond pulses," Appl. Phys. Lett. 80, 353-355 (2002). [CrossRef]
  37. J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, "Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples," Phys. Rev. B 74, 224106-16 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited