OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 15 — Jul. 21, 2008
  • pp: 11310–11327

Electro-optic single-crystalline organic waveguides and nanowires grown from the melt

Harry Figi, Mojca Jazbinšek, Christoph Hunziker, Manuel Koechlin, and Peter Günter  »View Author Affiliations


Optics Express, Vol. 16, Issue 15, pp. 11310-11327 (2008)
http://dx.doi.org/10.1364/OE.16.011310


View Full Text Article

Enhanced HTML    Acrobat PDF (874 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Organic nonlinear optical materials have proven to possess high and extremely fast nonlinearities compared to conventional inorganic crystals, allowing for sub-1-V driving voltages and modulation bandwidths of over 100 GHz. Compared to more widely studied poled electro-optic polymers, organic electro-optic crystals exhibit orders of magnitude better thermal and photochemical stability. The lack of available structuring techniques for organic crystals has been the major drawback for exploring their potential for photonic structures. Here we present a new approach to fabricate high-quality electrooptic single crystal waveguides and nanowires of configurationally locked polyene DAT2 (2-(3-(2-(4-dimethylaminophenyl)vinyl)-5,5- dimethylcyclohex-2-enylidene)malononitrile). The high-index-contrast waveguides (Δn = 0.54 ±0.04) are grown from the melt between two anodically bonded borosilicate glass wafers, which are structured and equipped with electrodes prior to bonding. Electro-optic phase modulation is demonstrated for the first time in the non-centrosymmetric DAT2 single crystalline channel waveguides at a wavelength of 1.55 μm. We also show that this technique in combination with DAT2 material allows for the fabrication of single-crystalline nanostructures inside large-area devices with crystal thicknesses below 30 nm and lengths of above 7 mm.

© 2008 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(160.4890) Materials : Organic materials
(230.2090) Optical devices : Electro-optical devices
(220.4241) Optical design and fabrication : Nanostructure fabrication
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Materials

History
Original Manuscript: May 29, 2008
Revised Manuscript: July 7, 2008
Manuscript Accepted: July 10, 2008
Published: July 14, 2008

Citation
Harry Figi, Mojca Jazbinšek, Christoph Hunziker, Manuel Koechlin, and Peter Günter, "Electro-optic single-crystalline organic waveguides and nanowires grown from the melt," Opt. Express 16, 11310-11327 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11310


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Bosshard, K. Sutter, P. Prêtre, J. Hulliger, M. Florsheimer, P. Kaatz, and P. Günter, Organic nonlinear optical materials (Gordon and Breach, Basel, 1995).
  2. C. Bosshard, M. Bösch, I. Liakatas, M. Jäger, and P. Günter, "Second-Order Nonlinear Optical Organic Materials: Recent Developments," in Nonlinear Optical Effects and Materials, P. Günter, ed., Springer Series in Optical Sciences Vol. 72, chap. 3 (Springer-Verlag, Berlin, 2000).
  3. Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (Sub-1-Volt) Halfwave Voltage Polymeric Electro-optic Modulators Achieved by Controlling Chromophore Shape," Science 288, 119-122 (2000). [CrossRef]
  4. M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband Modulation of Light by Using an Electro-Optic Polymer," Science 298, 1401-1403 (2002). [CrossRef] [PubMed]
  5. M. Schmidt, M. Eich, U. Huebner, and R. Boucher, "Electro-optically tunable photonic crystals," Appl. Phys. Lett. 87, 121110 (2005). [CrossRef]
  6. Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, "Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients," Nat. Photon. 1, 180-185 (2007). [CrossRef]
  7. B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, "Electrooptic Polymer Ring Resonator Modulation up to 165 GHz," IEEE J. Sel. Top. Quantum Electron. 13, 104-110 (2007). [CrossRef]
  8. L. R. Dalton, P. A. Sullivan, D. H. Bale, and B. C. Olbricht, "Theory-inspired nano-engineering of photonic and electronic materials: Noncentrosymmetric charge-transfer electro-optic materials," Solid-State Electron. 51, 1263-1277 (2007). [CrossRef]
  9. D. Rezzonico, M. Jazbinsek, A. Guarino, O.-P. Kwon, and P. Günter, "Electro-optic Charon polymeric microring modulators," Opt. Express 16, 613-627 (2008). [CrossRef] [PubMed]
  10. J.-M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, "High-speed low-voltage electrooptic modulator with a polymer-infiltrated silicon photonic crystal waveguide," Opt. Express 16, 4177-4191 (2008). [CrossRef] [PubMed]
  11. D. Rezzonico, S.-J. Kwon, H. Figi, O.-P. Kwon, M. Jazbinsek, and P. Gunter, "Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials," J. Chem. Phys. 128, 124713 (2008). [CrossRef] [PubMed]
  12. S. Manetta, M. Ehrensperger, C. Bosshard, and P. Günter, "Organic thin film crystal growth for nonlinear optics: Present methods and exploratory developments," Comptes Rendus Physique 3, 449-462 (2002). [CrossRef]
  13. M. Thakur, J. Titus, and A. Mishra, "Single-crystal thin films of organic molecular salt may lead to a new generation of electro-optic devices," Opt. Eng. 42, 456-458 (2003). [CrossRef]
  14. M. Jazbinsek, L. Mutter, and P. Günter, "Photonic applications with the organic nonlinear optical crystal DAST," IEEE J. Sel. Top. Quantum Electron., doi: 10.1109/JSTQE.2008.921407 (2008).
  15. T. Kaino, B. Cai, and K. Takayama, "Fabrication of DAST channel optical waveguides," Adv. Funct. Mater. 12, 599-603 (2002). [CrossRef]
  16. L. Mutter, M. Jazbinsek, M. Zgonik, U. Meier, C. Bosshard, and P. Günter, "Photobleaching and optical properties of organic crystal 4-N, N-dimethylamino-4??-N??-methyl stilbazolium tosylate," J. Appl. Phys. 94, 1356-1361 (2003). [CrossRef]
  17. P. Dittrich, R. Bartlome, G. Montemezzani, and P. Günter, "Femtosecond laser ablation of DAST," Appl. Surface Science 220, 88-95 (2003). [CrossRef]
  18. L. Mutter, M. Jazbinšek, C. Herzog, and P. Günter, "Electro-optic and nonlinear optical properties of ion implanted waveguides in organic crystals," Opt. Express 16, 731-739 (2008). [CrossRef] [PubMed]
  19. L. Mutter, M. Koechlin, M. Jazbinšek, and P. Günter, "Direct electron beam writing of channel waveguides in nonlinear optical organic crystals," Opt. Express 15, 16828-16838 (2007). [CrossRef] [PubMed]
  20. W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, "Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient," Appl. Phys. Lett. 84, 3729-3731 (2004). [CrossRef]
  21. S. Gauvin and J. Zyss, "Growth of organic crystalline thin films, their optical characterization and application to non-linear optics," J. Cryst. Growth 166, 507-527 (1996). [CrossRef]
  22. A. Leyderman, Y. Cui, and B. G. Penn, "Electro-optical effects in thin single-crystalline organic films grown from the melt," J. Phys. D: Appl. Phys. 31, 2711-2717 (1998). [CrossRef]
  23. O.-P. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider, M. Jazbinsek, V. Gramlich, and P. Günter, "Organic Nonlinear Optical Crystals Based on Configurationally Locked Polyene for Melt Growth," Chem. Mater. 18, 4049-4054 (2006). [CrossRef]
  24. A. Choubey, O.-P. Kwon, M. Jazbinsek, and P. Günter, "High-Quality Organic Single Crystalline Thin Films for Nonlinear Optical Applications by Vapor Growth," Cryst. Growth Des. 7, 402-405 (2007). [CrossRef]
  25. O.-P. Kwon, S.-J. Kwon, H. Figi, M. Jazbinsek, and P. Günter, "Organic Electro-optic Single- Crystalline Thin Films Grown Directly on Modified Amorphous Substrates," Adv. Mater. 20, 543-545 (2008). [CrossRef]
  26. M. A. Schmidt, "Wafer-to-Wafer Bonding for Microstructure Formation," Proc. IEEE 86, 1575-1585 (1998). [CrossRef]
  27. Q.-Y. Tong and U. Gösele, Semiconductor wafer bonding: Science and technology (John Wiley & Sons, New York, 1999).
  28. P. Lindner, V. Dragoi, S. Farrens, T. Glinsner, and P. Hangweier, "Advanced techniques for 3D devices in waferbonding processes," Solide State Technol. 47, 55-58 (2004).
  29. A. Berthold, L. Nicola, P. M. Sarro, and M. J. Vellekoop, "Glass-to-glass anodic bonding with standard IC technology thin films as intermediate layers," Sens. Actuators, A 82, 224-228 (2000). [CrossRef]
  30. P. V. Vidakovic, M. Coquillay, and F. Salin, "N-(4-nitrophenyl)-N-methylamino-aceto-nitrile: A new organic material for efficient second-harmonic generation in bulk and waveguide configurations. I. Growth, crystal structure, and characterization of organic crystal-cored fibers," J. Opt. Soc. Am. B 4, 998-1012 (1987). [CrossRef]
  31. S.-J. Kwon, O.-P. Kwon, J.-I. Seo, M. Jazbinsek, L. Mutter, V. Gramlich, Y.-S. Lee, H. Yun, and P. Günter, "Highly Nonlinear Optical Configurationally Locked Triene Crystals Based on 3,5-Dimethyl-2-cyclohexen-1-one," J. Phys. Chem. C 112, 7846-7852 (2008). [CrossRef]
  32. OlympIOs, "Integrated Optics Software," Available at http://www.c2v.nl/fr index.shtml? /products/software/olympios-software.shtml.
  33. X. Li, T. Abe, and M. Esashi, "Deep reactive ion etching of Pyrex glass using SF6 plasma," Sens. Actuators, A 87, 139-145 (2001). [CrossRef]
  34. D. A. Zeze, R. D. Forrest, J. D. Carey, D. C. Cox, I. D. Robertson, B. L. Weiss, and S. R. P. Silva, "Reactive ion etching of quartz and Pyrex for microelectronic applications," J. Appl. Phys. 92, 3624-3629 (2002). [CrossRef]
  35. L. Li, T. Abe, and M. Esashi, "Smooth surface glass etching by deep reactive ion etching with SF6 and Xe gases," J. Vac. Sci. Technol. B 21, 2545-2549 (2003). [CrossRef]
  36. H. C. Jung, W. Lu, S. Wang, L. J. Lee, and X. Hu, "Etching of Pyrex glass substrates by inductively coupled plasma reactive ion etching for micronanofluidic devices," J. Vac. Sci. Technol. B 24, 3162-3164 (2006). [CrossRef]
  37. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004). [CrossRef] [PubMed]
  38. M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, "Towards a millivolt optical modulator with nano-slot waveguides," Opt. Express 15, 8401-8410 (2007). [CrossRef] [PubMed]
  39. C. Hunziker, S.-J. Kwon, H. Figi, F. Juvalta, O.-P. Kwon, M. Jazbinsek, and P. Günter, "Configurationally locked polyene organic crystals OH1: Linear and nonlinear optical properties," (2008). (submitted).
  40. H. Figi, L. Mutter, C. Hunziker, M. Jazbinsek, P. Günter, and B. J. Coe, "Extremely large non-resonant quadratic nonlinear optical response in crystals of the stilbazolium salt DAPSH," (2008). (submitted).
  41. W. L. Bond, "Measurement of the Refractive Indices of Several Crystals," J. Appl. Phys. 36, 1674-1677 (1965). [CrossRef]
  42. F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4??-N??-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited