OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 15 — Jul. 21, 2008
  • pp: 11328–11336

Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film

B. J. Lee, L. P. Wang, and Z. M. Zhang  »View Author Affiliations


Optics Express, Vol. 16, Issue 15, pp. 11328-11336 (2008)
http://dx.doi.org/10.1364/OE.16.011328


View Full Text Article

Enhanced HTML    Acrobat PDF (562 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The present paper theoretically demonstrates coherent thermal emission in the infrared region by exciting magnetic polaritons between metallic gratings and an opaque metallic film, separated by a dielectric spacer. The coupling of the metallic strips and the film induces a magnetic response that is characterized by a negative permeability and positive permittivity. On the other hand, the metallic film intrinsically exhibits a negative permittivity and positive permeability in the near infrared. This artificial structure is equivalent to a pair of single-negative materials. By exciting surface magnetic polaritons, large emissivity peaks can be achieved at the resonance frequencies and are almost independent of the emission angle. The resonance frequency of the magnetic response can be predicted by an analogy to an inductor and capacitor circuit. The proposed structure can be easily constructed using micro/nanofabrication.

© 2008 Optical Society of America

OCIS Codes
(240.5420) Optics at surfaces : Polaritons
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 30, 2008
Revised Manuscript: July 10, 2008
Manuscript Accepted: July 10, 2008
Published: July 14, 2008

Citation
B. J. Lee, L. P. Wang, and Z. M. Zhang, "Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film," Opt. Express 16, 11328-11336 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11328


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  3. J.-J.  Greffet, R.  Carminati, K.  Joulain, J.-P.  Mulet, S.  Mainguy, and Y.  Chen, "Coherent emission of light by thermal sources," Nature  416, 61-64 (2002). [CrossRef] [PubMed]
  4. B. J. Lee, C. J. Fu, and Z. M. Zhang, "Coherent thermal emission from one-dimensional photonic crystals," Appl. Phys. Lett. 87, 071904 (2005). [CrossRef]
  5. B. J. Lee, Y. -B. Chen, and Z. M. Zhang, "Surface waves between metallic films and truncated photonic crystals observed with reflectance spectroscopy," Opt. Lett. 33, 204-206 (2008). [CrossRef] [PubMed]
  6. M.  Laroche, R.  Carminati, and J.-J.  Greffet, "Coherent thermal antenna using a photonic crystal slab," Phys. Rev. Lett.  96, 123903 (2006). [CrossRef] [PubMed]
  7. C. J. Fu, Z. M. Zhang, and D. B. Tanner, "Planar heterogeneous structures for coherent emission of radiation," Opt. Lett. 30, 1873-1875 (2005). [CrossRef] [PubMed]
  8. V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41-48 (2007). [CrossRef]
  9. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001). [CrossRef] [PubMed]
  10. L. V. Panina, A. N. Grigorenko, and D. P. Makhnovskiy, "Optomagnetic composite medium with conducting nanoelements," Phys. Rev. B 66, 155411 (2002). [CrossRef]
  11. G.  Dolling, C.  Enkrich, M.  Wegener, J. F.  Zhou, C. M.  Soukoulis, and S.  Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett.  30, 3198-3200 (2005). [CrossRef] [PubMed]
  12. U. K. Chettiar, A. V. Kildishev, T. A. Klar, and V. M. Shalaev, "Negative index metamaterial combining magnetic resonators with metal films," Opt. Express 14, 7872-7877 (2006). [CrossRef] [PubMed]
  13. G.  Shvets and Y.  Urzhumov, "Negative index meta-materials based on two-dimensional metallic structures," J. Opt. A  8, S122-S130 (2006). [CrossRef]
  14. J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, "Unifying approach to left-handed material design," Opt. Lett. 31, 3620-3622 (2006). [CrossRef] [PubMed]
  15. T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, "Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials," J. Appl. Phys. 103, 023104 (2008). [CrossRef]
  16. B. J. Lee, Y.-B. Chen, and Z. M. Zhang, "Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared," J. Comput. Theo. Nanosci. 5, 201-213 (2008).
  17. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  18. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economon, J. B. Pendry, C. M. Soukoulis, "Saturation of the magnetic response of split-ring resonators at optical frequencies," Phys. Rev. Lett. 95, 223902 (2005). [CrossRef] [PubMed]
  19. V. D. Lam, J. B. Kim, N. S. J. Lee, Y. P. Lee, and J. Y. Rhee, "Dependence of the magnetic-resonance frequency on the cut-wire width of cut-wire pair medium," Opt. Express 15, 16651-16656 (2008). [CrossRef]
  20. J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, "Negative index materials using simple short wire pairs," Phys. Rev. B 73, 041101 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited