OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 15 — Jul. 21, 2008
  • pp: 11337–11343

Fabrication of Carbon nanotube-poly-methyl-methacrylate composites for nonlinear photonic devices

Amos Martinez, Sho Uchida, Yong-Won Song, Takaaki Ishigure, and Shinji Yamashita  »View Author Affiliations


Optics Express, Vol. 16, Issue 15, pp. 11337-11343 (2008)
http://dx.doi.org/10.1364/OE.16.011337


View Full Text Article

Enhanced HTML    Acrobat PDF (199 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Carbon nanotubes (CNT) are an attractive material for photonic applications due to their nonlinear optical properties, such as the nonlinear saturable absorption and high third order nonlinearity. However their utilization has been hindered by the lack of flexibility on the device design which rises from the current methods of Carbon nanotube deposition within the optical system. A suitable approach to solve this problem is to embed the CNTs in an optical material from which complex devices such as optical waveguides or optical fibers can be fabricated. Here, we propose a novel method to fabricate Carbon nanotube-doped poly-methyl-methacrylate (PMMA) composites in which the Carbon nanotubes are dispersed in the methyl-methacrylate (MMA) monomer solution prior to and during the polarization process. This method allows the bundle separation and dispersion of the CNT in a liquid state without the need for solvents, hence simplifying the method and facilitating the fabrication of volume CNT-PMMA. Volume fabrication makes this technique suitable for the fabrication of CNT-doped polymer fibers. In this paper, we also analyzed the merits of adding dopants such as diphenyl sulfide (DPS) and benzyl benzoate (BEN) to the CNT-PMMA composite and we observed that DPS plays the role of CNT dispersion stabilizer that can improve the device performance. The CNT-PMMA composite was employed to implement passive mode-locked laser.

© 2008 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(160.5470) Materials : Polymers
(190.4400) Nonlinear optics : Nonlinear optics, materials

ToC Category:
Materials

History
Original Manuscript: June 5, 2008
Revised Manuscript: June 29, 2008
Manuscript Accepted: July 5, 2008
Published: July 14, 2008

Citation
Amos Martinez, Sho Uchida, Yong-Won Song, Takaaki Ishigure, and Shinji Yamashita, "Fabrication of Carbon nanotube poly-methyl-methacrylate composites for nonlinear photonic devices," Opt. Express 16, 11337-11343 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11337


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba "Optical properties of single-wall carbon nanotubes," Synth. Met. 103, 2555-2558 (1999) [CrossRef]
  2. S. Y. Set, H. Yaguchi, Y. Tanaka and M. Jablonski, "Laser mode-locking using a saturable absorber incorporating carbon nanotubes," J. Lightwave Technol. 22, 51-56 (2004). [CrossRef]
  3. U. Keller, D. Miller, G. Boyd, T. Chiu, J. Ferguson, and M. Asorn, "Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: An antiresonant semiconductor Fabry-Perot saturable absorber," Opt. Lett. 17, 505-507 (1992) [CrossRef] [PubMed]
  4. V. J. Matsas, T. P. Newson, D. J. Richardson, and D. J. Payne, "Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarization rotation," Electron. Lett. 28, 1391-1393 (1992). [CrossRef]
  5. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski and S.Y. Set, "Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers," Opt. Lett. 29, 1581-1583 (2004). [CrossRef] [PubMed]
  6. A. G. Rozhin, Y. Sakakibara, S. Namiki, M. Tokumoto, and H. Kataura, "Sub-200-fs pulsed erbium-doped fiber laser using a carbon nanotube-polyvinylalcohol mode-locker," Appl. Phys. Lett. 88, 051118 (2006) [CrossRef]
  7. T. R. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, "Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes," Opt. Express 13, 8025-8031 (2005) [CrossRef] [PubMed]
  8. A. E. Tausenev, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, V. I. Konov, A. V. Konyashchenko, P. G. Kryukov, and E. M. Dianov, "Self-mode-locking in erbium-doped fibre lasers with saturable polymer film absorbers containing single-wall Carbon nanotubes synthesized by the arc discharge method," Quantum Electron. 37, 205-208 (2007). [CrossRef]
  9. M. Nakazawa, S. Nakahara, T. Hirooka, M. Yoshida, T. Kaino, and K. Komatsu, "Polymer saturable absorber materials in the 1.5 ?m band using polymethyl-methacrylate and polysterene with single-wall carbon nanotubes and their application to a femtosecond laser," Opt. Lett. 31, 915-917 (2006). [CrossRef] [PubMed]
  10. T. Oomuro, R. Kaji, T. Itatani, H. Ishii, E. Itoga, H. Kataura, M. Yamashita, M. Mori, and Y. Sakakibara, " Carbon Nanotube-Polyimide Saturable Absorbing Waveguide Made by Simple Photolithography," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CThV1.
  11. Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, "Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 mu m," Appl. Phys. Lett. 81, 975-977 (2002) [CrossRef]
  12. T. Ishigure, A. Horibe, E. Nihei, and Y. Koike, "High-Bandwidth, High-Numerical Aperture Graded-Index Polymer Optical Fiber," J. Lightwave Technol. 13, 1686-1691 (1995). [CrossRef]
  13. M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, "Raman Spectroscopy of Carbon Nanotubes," Phys. Rep. 409, 47-99 (2005). [CrossRef]
  14. R. Jacquemin, S. Kazaoui, D. Yu, A. Hussanien, N. Minami, H. Kataura, and Y. Achiba, "Doping mechanism in single-wall carbon nanotubes studied by optical absorption," Synth. Met. 115, 283-287 (2000). [CrossRef]
  15. E. P. Ippen, "Principles of Passive Mode-Locking," Appl. Phys. B 58, 159-170 (1994).
  16. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A 72, 043816 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited