OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 15 — Jul. 21, 2008
  • pp: 11354–11360

Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization

Akihiro Tanaka, Mikio Fujiwara, Sae Woo Nam, Yoshihiro Nambu, Seigo Takahashi, Wakako Maeda, Ken-ichiro Yoshino, Shigehito Miki, Burm Baek, Zhen Wang, Akio Tajima, Masahide Sasaki, and Akihisa Tomita  »View Author Affiliations

Optics Express, Vol. 16, Issue 15, pp. 11354-11360 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (127 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrated ultra fast BB84 quantum key distribution (QKD) transmission at 625 MHz clock rate through a 97 km field-installed fiber using practical clock synchronization based on wavelength-division multiplexing (WDM). We succeeded in over-one-hour stable key generation at a high sifted key rate of 2.4 kbps and a low quantum bit error rate (QBER) of 2.9%. The asymptotic secure key rate was estimated to be 0.78–0.82 kbps from the transmission data with the decoy method of average photon numbers 0, 0.15, and 0.4 photons/pulse.

© 2008 Optical Society of America

OCIS Codes
(060.5565) Fiber optics and optical communications : Quantum communications
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Quantum Optics

Original Manuscript: May 14, 2008
Revised Manuscript: June 15, 2008
Manuscript Accepted: July 10, 2008
Published: July 14, 2008

Akihiro Tanaka, Mikio Fujiwara, Sae W. Nam, Yoshihiro Nambu, Seigo Takahashi, Wakako Maeda, Ken-ichiro Yoshino, Shigehito Miki, Burm Baek, Zhen Wang, Akio Tajima, Masahide Sasaki, and Akihisa Tomita, "Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization," Opt. Express 16, 11354-11360 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennett and G. Brassard, "Quantum cryotography: public key distribution and coin tossing," in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, 1984 (IEEE, New York, 1984), 175-179.
  2. H. Inamori, N. Lütkenhaus, and D. Mayers, "Unconditional Security of Practical Quantum Key Distribution," eprint arXiv:0107017 (2001).
  3. D. Gottesman, H. -K. Lo, N. Lütkenhaus, and J. Preskill, "Security of quantum key distribution with imperfect devices," Quant. Inf. Comput. 4, 325-360 (2004).
  4. W. -Y. Hwang, "Quantum Key Distribution with High Loss: Toward Global Secure Communication," Phys. Rev. Lett. 91, 057901 (2003). [CrossRef] [PubMed]
  5. X. -B. Wang. "Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography," Phys. Rev. Lett. 94, 230503 (2005). [CrossRef] [PubMed]
  6. H. -K. Lo, X. Ma, and K. Chen, "Decoy State Quantum Key Distribution," Phys. Rev. Lett. 94, 230504 (2005). [CrossRef] [PubMed]
  7. Y. Zhao, B. Qi, X. Ma, H. -K. Lo, and L. Qian, "Experimental Quantum Key Distribution with Decoy States," Phys. Rev. Lett. 96, 070502 (2006). [CrossRef] [PubMed]
  8. Y. Zhao, R. Adve, and T. J. Lim, "Improving Amplify-and Forward Relay Networks: Optimal Power Allocation versus Selection," in Proceedings of IEEE International Symposium on Information Theory, Seattle, USA, 2006 (IEEE, New York, 2006), 2094-2098
  9. D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, "Long-Distance Decoy-State Quantum Key Distribution in Optical Fiber," Phys. Rev. Lett. 98, 010503 (2007). [CrossRef] [PubMed]
  10. C. -Z. Peng, J. Zhang, D. Yang, W. -B. Gao, H. -X. Ma, H. Yin, H. -P. Zeng, T. Yang, X. -B. Wang, and J. -W. Pan, "Experimental Long-Distance Decoy-State Quantum Key Distribution Based on Polarization Encoding," Phys. Rev. Lett. 98, 010505 (2007). [CrossRef] [PubMed]
  11. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nature Photon. 1, 343-348 (2007). [CrossRef]
  12. D. Stucki, N. Gisin, G. Guinnard, G. Ribordy, and H. Zbinden, "Quantum Key Distribution over 67 km with a plug & play system," New J. Phys. 4, 41 (2002). [CrossRef]
  13. T. Hasegawa, T. Nishioka, H. Ishizuka, J. Abe, K. Shimizu, and M. Matsui, "Field experiments of quantum cryptosystem in 96km installed fibers," in European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 2005, EH3-4.
  14. A. Tanaka, W. Maeda, A. Tajima, and S. Takahashi, "Fortnight quantum key generation field trial using QBER monitoring," in Proceedings of the 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Sidney, Australia, 2005 (IEEE, New York, 2005), 557-558.
  15. X. -F. Mo, B. Zhu, Z. -F. Han, Y. -Z. Gui, and G. -C. Guo, "Faraday-Michelson system for quantum cryptography," Opt. Lett. 30, 2632-2634 (2005). [CrossRef] [PubMed]
  16. H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, and W. Tittel, "Interferometry with Faraday mirrors for quantum cryptography," Electron. Let. 33, 586-588 (1997). [CrossRef]
  17. T. Kimura, Y. Nambu, T. Hatanaka, A. Tomita, H. Kosaka, and K. Nakamura, "Single-photon Interference over 150km Transmission Using Silica-based Integrated-optic Interferometers for Quantum Cryptography," Jpn. J. Appl. Phys. 43, 1217-1219 (2004). [CrossRef]
  18. Y. Nambu, K. Yoshino, and A. Tomita, "One-Way Quantum Key Distribution System Based on Planar Lightwave Circuits," Jpn. J. Appl. Phys. 45, 5344-5348 (2006). [CrossRef]
  19. G. N. Gol???tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smimov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001). [CrossRef]
  20. R. H. Hadfield, A. J. Miller, S. W. Nam, R. L. Kautz, and R. E. Schwall, "Low-frequency phase locking in high-inductance superconducting nanowires," Appl. Phys. Lett. 87, 203505 (2005). [CrossRef]
  21. S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, "NbN Superconducting Single-Photon Detectors Prepared on Single-Crystal MgO Substrates," IEEE Trans. Appl. Supercond. 17, 285-288 (2007). [CrossRef]
  22. A. Poppe, H. Huebel, F. Karinou, B. Blauensteiner, B. Schrenk, T. Lorünser, M. Mayenburg, E. Querasser, and A. Zeilinger, "Quantum key distribution over WDMs and optical switches to combine the quantum channel with synchronization channels," in 33rd European Conference on Optical Communication (ECOC), Berlin, Germany, 2007, 9.4.7.
  23. P. D. Townsend, "Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing," Electron. Lett. 33, 188-190 (1997). [CrossRef]
  24. C. Gobby, Z. L. Yuan, and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 84, 3762-3764 (2004). [CrossRef]
  25. W. Maeda, A. Tajima, A. Tanaka, S. Takahashi, and T. Takeuchi, "High-speed QKD system synchronized by automatic phase-alignment mechanism," in Optical Fiber Communication Conference and Exposition (OFC), Anaheim, USA, 2005,OWI4.
  26. T. J. Xia, D. Z. Chen, G. A. Wellbrock, A. Zavriyev, A. C. Beal, and K. M. Lee, "In-Band Quantum Key Distribution (QKD) on Fiber Populated by High-Speed Classical Data Channels," in Optical Fiber Communication Conference and Exposition (OFC), Anaheim, USA, 2006, OTuJ7.
  27. J. Auyeung and A. Yariv. "Spontaneous and Stimulated Raman Scattering in Long Low Loss Fibers," IEEE J. Quant. Electron. QE- 14, 347-351 (1978). [CrossRef]
  28. P. L. Voss and P. Kumar, "Raman-noise-induced noise-figure limit for ?????3) parametric amplifiers," Opt. Lett. 29, 445-447 (2004). [CrossRef] [PubMed]
  29. H. -K. Lo and J. Preskill, "Security of quantum key distribution using weak coherent states with nonrandom phases," Quant. Inf. Comput. 8, 431-458 (2007).
  30. K. Yoshino, A. Tanaka, Y. Nambu, A. Tajima, and A. Tomita, in 33rd European Conference on Optical Communication (ECOC), Berlin, Germany, 2007, 9.4.6.
  31. M. Hayashi, "Upper bounds of eavesdropper???s performances in finite-length code with decoy method," Phys. Rev. A 76, 012329 (2007) [CrossRef]
  32. M. Hayashi, "General theory for decoy-state quantum key distribution with an arbitrary number of intensities," New J. Phys. 9, 284 (2007). [CrossRef]
  33. A. Tajima, A. Tanaka, W. Maeda, S. Takahashi, and A. Tomita, "Practical Quantum Cryptosystem for Metro Area Applications," IEEE J. Sel. Top. Quantum Electron. 13, 1031-1038 (2007). [CrossRef]
  34. Y. Nambu, K. Yoshino, and A. Tomita, "Quantum Encoder and Decoder for Practical Quantum Key Distribution Using a Planar Lightwave Circuit," J. Mod. Opt. (to be published)
  35. N. Namekata, G , Fujii, S . Inoue, T . Honjo, and H . Takesue, "Differential phase shift quantum key distribution using single-photon detectors based on a sinusoidally gated InGaAs/InP avalanche photodiode," Appl. Phys. Lett. 91, 011112 (2007) [CrossRef]
  36. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, "High speed single photon detection in the near infrared," Appl. Phys. Lett. 91, 041114 (2007). [CrossRef]
  37. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, "Gigahertz quantum key distribution with InGaAs avalanche photodiodes," Appl. Phys. Lett. 92, 201104 (2008). [CrossRef]
  38. J. Hasegawa, M. Hayashi, T. Hiroshima, A. Tanaka, and A. Tomita, "Experimental Decoy State Quantum Key Distribution with Unconditional Security Incorporating Finite Statistics," eprint arXiv:0705.3081 (2007).
  39. V. Scarani and R. Renner, "Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way post-processing," eprint arXiv:0708.0709 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited