OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 15 — Jul. 21, 2008
  • pp: 11376–11392

The failure of perfectly matched layers, and towards their redemption by adiabatic absorbers

Ardavan F. Oskooi, Lei Zhang, Yehuda Avniel, and Steven G. Johnson  »View Author Affiliations


Optics Express, Vol. 16, Issue 15, pp. 11376-11392 (2008)
http://dx.doi.org/10.1364/OE.16.011376


View Full Text Article

Enhanced HTML    Acrobat PDF (681 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Although perfectly matched layers (PMLs) have been widely used to truncate numerical simulations of electromagnetism and other wave equations, we point out important cases in which a PML fails to be reflectionless even in the limit of infinite resolution. In particular, the underlying coordinate-stretching idea behind PML breaks down in photonic crystals and in other structures where the material is not an analytic function in the direction perpendicular to the boundary, leading to substantial reflections. The alternative is an adiabatic absorber, in which reflections are made negligible by gradually increasing the material absorption at the boundaries, similar to a common strategy to combat discretization reflections in PMLs. We demonstrate the fundamental connection between such reflections and the smoothness of the absorption profile via coupled-mode theory, and show how to obtain higher-order and even exponential vanishing of the reflection with absorber thickness (although further work remains in optimizing the constant factor).

© 2008 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(160.5298) Materials : Photonic crystals

ToC Category:
Diffraction and Gratings

History
Original Manuscript: May 6, 2008
Revised Manuscript: May 29, 2008
Manuscript Accepted: May 29, 2008
Published: July 14, 2008

Citation
Ardavan F. Oskooi, Lei Zhang, Yehuda Avniel, and Steven G. Johnson, "The failure of perfectly matched layers, and towards their redemption by adiabatic absorbers," Opt. Express 16, 11376-11392 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11376


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994). [CrossRef]
  2. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 2000).
  3. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd Edition (Princeton Univ. Press, 2008).
  4. M. Koshiba, Y. Tsuji, and S. Sasaki, "High-performance absorbing boundary conditions for photonic crystal waveguide simulations," IEEE Microwave Wirel. Compon. Lett. 11, 152-154 (2001). [CrossRef]
  5. Y. Tsuji and M. Koshiba, "Finite element method using port truncation by perfectly matched layer boundary conditions for optical waveguide discontinuity problems," J. Lightwave Technol. 20, 463-468 (2002). [CrossRef]
  6. E. P. Kosmidou, T. I. Kosmani, and T. D. Tsiboukis, "A comparative FDTD study of various PML configurations for the termination of nonlinear photonic bandgap waveguide structures," IEEE Trans. Magn. 39, 1191-1194 (2003). [CrossRef]
  7. A. R. Weily, L. Horvath, K. P. Esselle, and B. C. Sanders, "Performance of PML absorbing boundary conditions in 3d photonic crystal waveguides," Microwave Opt. Technol. Lett. 40, 1-3 (2004). [CrossRef]
  8. N. Kono and M. Koshiba, "General finite-element modeling of 2-D magnetophotonic crystal waveguides," IEEE Photon. Tech. Lett. 17, 1432-1434 (2005). [CrossRef]
  9. W. C. Chew and J. M. Jin, "Perfectly matched layers in the discretized space: An analysis and optimization," Electromagnetics 16, 325-340 (1996). [CrossRef]
  10. S. G. Johnson, P. Bienstman, M. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. Joannopoulos, "Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals," Phys. Rev. E 66, 066608 (2002).
  11. E. A. Marengo, C. M. Rappaport, and E. L. Miller, "Optimum PML ABC conductivity profile in FDFD," IEEE Trans. Magn. 35, 1506-1509 (1999). [CrossRef]
  12. J. S. Juntunen, N. V. Kantartzis, and T. D. Tsiboukis, "Zero reflection coefficient in discretized PML," IEEE Microwave Wirel. Compon. Lett. 11, 155-157 (2001). [CrossRef]
  13. Y. S. Rickard and N. K. Nikolova, "Enhancing the PML absorbing boundary conditions for the wave equation," IEEE Trans. Antennas Propag. 53, 1242-1246 (2005). [CrossRef]
  14. Z. Chen and X. Liu, "An adaptive perfectly matched layer technique for time-harmonic scattering problems," SIAM J. Num. Anal. 43, 645-671 (2005). [CrossRef]
  15. Z. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. Antennas Propag. 43, 1460-1463 (1995). [CrossRef]
  16. W. C. Chew and W. H. Weedon, "A 3d perfectly matched medium from modified Maxwell???s equations with stretched coordinates," Microwave Opt. Technol. Lett. 7, 599-604 (1994). [CrossRef]
  17. C. M. Rappaport, "Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space," IEEE Microwave and Guided Wave Lett. 5, 90-92 (1995). [CrossRef]
  18. F. L. Teixeira and W. C. Chew, "General close-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media," IEEE Microwave and Guided Wave Lett. 8, 223-225 (1998). [CrossRef]
  19. F. Collino and P. B. Monk, "Optimizing the perfectly matched layer," Comput. Methods Appl. Mech. Engrg. 164, 157-171 (1998). [CrossRef]
  20. A. J. Ward and J. B. Pendry, "Refraction and geometry in Maxwell???s equations," J. Mod. Opt. 43, 773-793 (1996). [CrossRef]
  21. W. Huang, C. Xu,W. Lui, and K. Yokoyama, "The perfectly matched layer boundary condition for modal analysis of optical waveguides: leaky mode calculations," IEEE Photon. Tech. Lett. 8, 652-654 (1996). [CrossRef]
  22. D. Pissoort and F. Olyslager, "Termination of periodic waveguides by PMLs in time-harmonic integral equation-like techniques," IEEE Antennas and Wireless Propagation Lett. 2, 281-284 (2003). [CrossRef]
  23. A. Mekis, S. Fan, and J. D. Joannopoulos, "Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides," IEEE Microwave and Guided Wave Lett. 9, 502-504 (1999). [CrossRef]
  24. E. Moreno, D. Erni, and C. Hafner, "Modeling of discontinuities in photonic crystal waveguides with the multiple multipole method," Phys. Rev. E 66, 036618 (2002).
  25. Z.-Y. Li and K.-M. Ho, "Light propagation in semi-infinite photonic crystals and related waveguide structures," Phys. Rev. B 68 (2003).
  26. D. Pissoort, B. Denecker, P. Bienstman, F. Olyslager, and D. De Zutter, "Comparative study of three methods for the simulation of two-dimensional photonic crystals," J. Opt. Soc. Am. A 21, 2186-2195 (2004). [CrossRef]
  27. M. Lassas and E. Somersalo, "On the existence and convergence of the solution of PML equations," Computing 60, 229-241 (1998). [CrossRef]
  28. L. Zschiedrich, R. Klose, A. Sch¨adle, and F. Schmidt, "A new finite element realization of the perfectly matched layer method for helmholtz scattering problems on polygonal domains in two dimensions," J. Comput. Appl. Math. 188, 12-32 (2006). [CrossRef]
  29. J. Fang and Z. Wu, "Generalized perfectly matched layer for the absorption of propagating and evanescent waves in lossless and lossy media," IEEE Trans. Microwave Theory Tech. 44, 2216-2222 (1998). [CrossRef]
  30. X. T. Dong, X. S. Rao, Y. B. Gan, B. Guo, and W. Y. Yin, "Perfectly matched layer-absorbing boundary condition for left-handed materials," IEEE Microwave Wirel. Compon. Lett. 14, 301-303 (2004). [CrossRef]
  31. A. Dranov, J. Kellendonk, and R. Seller, "Discrete time adiabatic theorems for quantum mechanical systems," J. Math. Phys. 39, 1340-1349 (1998). [CrossRef]
  32. A. Christ and H. L. Hartnagel, "Three-dimensional finite-difference method for the analysis of microwave-device embedding," IEEE Trans. Microwave Theory Tech. 35, 688-696 (1987). [CrossRef]
  33. M. Povinelli, S. Johnson, and J. Joannopoulos, "Slow-light, band-edge waveguides for tunable time delays," Opt. Express 13, 7145-7159 (2005). [CrossRef] [PubMed]
  34. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd Edition (Academic Press, San Diego, 1991).
  35. K. O. Mead and L. M. Delves, "On the convergence rate of generalized fourier expansions," IMA J. Appl. Math. 12, 247-259 (1973). [CrossRef]
  36. J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd Edition (Springer, 1989).
  37. D. Elliott, "The evaluation and estimation of the coefficients in the Chebyshev series expansion of a function," Mathematics of Computation 18, 274-284 (1964). [CrossRef]
  38. J. P. Boyd, "The optimization of convergence for Chebyshev polynomial methods in an unbounded domain," J. Comput. Phys. 45, 43-79 (1982). [CrossRef]
  39. H. Cheng, Advanced Analytic Methods in Applied Mathematics, Science and Engineering (Luban Press, Boston, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited