OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 15 — Jul. 21, 2008
  • pp: 11438–11452

In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography

Lin An and Ruikang K Wang  »View Author Affiliations


Optics Express, Vol. 16, Issue 15, pp. 11438-11452 (2008)
http://dx.doi.org/10.1364/OE.16.011438


View Full Text Article

Enhanced HTML    Acrobat PDF (645 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical micro-angiography (OMAG), based on Fourier domain optical coherence tomography (OCT), is a recently developed imaging modality that provides dynamic blood flow imaging within microcirculation tissue beds in vivo. This paper presents its first application in imaging the blood circulations in posterior chamber of human eye. To eliminate/minimize the motion artifacts in OMAG flow image caused by the inevitable subject movement, we describe a method to compensate the bulk tissue motion by use of phase changes in sequential OCT A scan signals. By use of a fast OMAG/OCT imaging system at ~840nm wavelength band, we show that OMAG is capable of providing volumetric vasculatural images in retina and choroids, down to capillary level imaging resolution, within ~10 s. The depth-resolved volumetric views of the separate retina and choroid vasculatures are also presented. In the end of this paper, we provide a comparison of the OMAG results with those from Doppler OCT and optical coherence angiography.

© 2008 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: May 14, 2008
Revised Manuscript: July 2, 2008
Manuscript Accepted: July 15, 2008
Published: July 16, 2008

Virtual Issues
Vol. 3, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Lin An and Ruikang K. Wang, "In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography," Opt. Express 16, 11438-11452 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11438


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical Coherence Tomography - Principles and Applications," Rep. Prog. Phys. 66, 239-303 (2003). [CrossRef]
  2. P. H. Tomolins and R. K. Wang, "Theory, development and applications of optical coherence tomography"J Phys. D: Appl. Phys. 38, 2519-2535 (2005). [CrossRef]
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991). [CrossRef] [PubMed]
  4. Z. P. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, "Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography," Opt. Lett. 22, 1119-1121(1997). [CrossRef] [PubMed]
  5. Y. H. Zhao, Z. P. Chen, Z. H. Ding, H. Ren, and J. S. Nelson, "Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation," Opt. Lett. 25, 98-100 (2002). [CrossRef]
  6. H.W. Ren, Z. H. Ding, Y. H. Zhao, J. Miao, J. S. Nelson, and Z. P. Chen, "Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin," Opt. Lett. 27, 1702-1704 (2002). [CrossRef]
  7. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, "Real-time measurement of in vitro flow by Fourier domain color Doppler optical coherence tomography," Opt. Lett. 29, 171-173 (2004). [CrossRef] [PubMed]
  8. J. Zhang and Z. P. Chen, "In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography," Opt. Express 13, 7449-7459 (2005). [CrossRef] [PubMed]
  9. B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5492 (2005). [CrossRef] [PubMed]
  10. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2005). [CrossRef]
  11. R. K. Wang and Z. H. Ma, "Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography," Opt. Lett. 31, 3001-3003 (2006). [CrossRef] [PubMed]
  12. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003). [CrossRef] [PubMed]
  13. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003). [CrossRef] [PubMed]
  14. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003). [CrossRef] [PubMed]
  15. B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005). [CrossRef] [PubMed]
  16. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, "Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography," Opt. Lett. 29,171-3 (2004). [CrossRef] [PubMed]
  17. S. Makita, Y. Hong, M. Y. T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821 (2006). [CrossRef] [PubMed]
  18. Y. Hong, S. Makita, and Y. Yasuno, "Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography," Opt. Express 15, 7538 (2007). [CrossRef] [PubMed]
  19. R. K Wang, "In vivo full rang complex Fourier domain optical coherence tomography," Appl. Phys. Lett. 90, 054103 (2007).
  20. R. K. Wang, "Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning," Phys. Med. Biol. 52, 5897-5907 (2007). [CrossRef] [PubMed]
  21. R. K. Wang, S. L. Jacques, Z. H. Ma, S. Hanson, and A. Gruber, "Three Dimensional Optical Angiography," Opt. Express 15, 4083 (2007). [CrossRef] [PubMed]
  22. R. K. Wang and S. Hurst "Mapping of cerebrovascular blood perfusion in mice with skin and cranium intact by Optical Micro-AngioGraphy at 1300nm wavelength," Opt. Express 15, 11402-11412 (2007). [CrossRef] [PubMed]
  23. R. K. Wang, "Three dimensional optical angiography maps directional blood perfusion deep within microcirculation tissue beds in vivo," Phys. Med. Biol. 52, N531-N537 (2007). [CrossRef] [PubMed]
  24. American National Standards Institute, American National Standard for Safe Use of Lasers: ANSI Z136.1 (Laser Institute of America, Orlando, Florida, 2000).
  25. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). [CrossRef] [PubMed]
  26. L. An and R. K. Wang, "Use of scanner to modulate spatial interferogram for in vivo full range Fourier domain optical coherence tomography," Opt. Lett. 32, 3423-25 (2007). [CrossRef] [PubMed]
  27. B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15, 13375 (2007) [CrossRef] [PubMed]
  28. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, "Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning," Opt. Lett. 32, 3453 (2007). [CrossRef] [PubMed]
  29. E. A. Bedrosian, "Product theorem for Hilbert transforms," Proc. IEEE 51, 868-869 (1963). [CrossRef]
  30. S. L. Hahn, "Hilbert Transformation" in The Transforms and Applications Handbook, A.D. Poularikas, ed., (CRC, 1996), pp 463.
  31. V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, "Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation," Opt. Commun. 208, 209-222 (2002). [CrossRef]
  32. M. Mujat, R. C. Chan, B. Cense, B. H. Park, C. Joo, T. Akkin, T. C. Chen, and J. F. de Boer, "Retinal nerve fiber layer thickness map determined from optical coherence tomography images," Opt. Express 13, 9480-9491 (2005). [CrossRef] [PubMed]
  33. S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. A. Puliafito, "Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography," Opt. Express 13, 444-452 (2005). [CrossRef] [PubMed]
  34. R. K. Wang, "Directional blood flow imaging in volumetric optical micro-angiography achieved by digital frequency modulation," Accepted for publication in Opt. Lett.
  35. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, "Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography," Opt. Express 16, 6008-6025 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (2889 KB)     
» Media 2: AVI (1187 KB)     
» Media 3: AVI (782 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited