OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 15 — Jul. 21, 2008
  • pp: 11525–11539

Phase-resolved magnetomotive OCT for imaging nanomolar concentrations of magnetic nanoparticles in tissues

Amy L. Oldenburg, Vasilica Crecea, Stephanie A. Rinne, and Stephen A. Boppart  »View Author Affiliations

Optics Express, Vol. 16, Issue 15, pp. 11525-11539 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (717 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Magnetic nanoparticles (MNPs) are increasingly important in magnetic resonance and biomedical optical imaging. We describe a method for imaging MNPs by detecting nanoscale displacements using a phase-resolved spectral-domain optical coherence tomography (OCT) system. Biological tissues and phantoms are exposed to ∼800 G magnetic fields modulated at 56 and 100 Hz to mechanically actuate embedded iron oxide MNPs (∼20 nm diameter). Sensitivity to 27 μg/g (∼2 nM) MNPs within tissue phantoms is achieved by filtering paramagnetic from diamagnetic vibrations. We demonstrate biological feasibility by imaging topically applied MNPs during their diffusion into an excised rat tumor over a 2 hour time period.

© 2008 Optical Society of America

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: May 28, 2008
Revised Manuscript: July 3, 2008
Manuscript Accepted: July 7, 2008
Published: July 18, 2008

Virtual Issues
Vol. 3, Iss. 8 Virtual Journal for Biomedical Optics

Amy L. Oldenburg, Vasilica Crecea, Stephanie A. Rinne, and Stephen A. Boppart, "Phase-resolved magnetomotive OCT for imaging nanomolar concentrations of magnetic nanoparticles in tissues," Opt. Express 16, 11525-11539 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. F. Schenck, "Physical interactions of static magnetic fields with living tissues," Prog. Biophys. Mol. Biol. 87, 185-204 (2005). [CrossRef]
  2. H. Watarai and M. Namba, "Capillary magnetophoresis of human blood cells and their magnetophoretic trapping in a flow system," J. Chromatogr. A 961, 3-8 (2002). [CrossRef] [PubMed]
  3. M. Arruebo, R. Fernandez-Pachaco, M. R. Ibarra, and J. Santamaria, "Magnetic nanoparticles for drug delivery," Nano Today 2, 22-32 (2007). [CrossRef]
  4. A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, "Medical application of functionalized magnetic nanoparticles," J. Biosci. Bioeng. 100, 1-11 (2005). [CrossRef] [PubMed]
  5. Q2. J. Dobson, "Magnetic nanoparticles for drug delivery," Drug Dev. Res. 67, 66-60 (2006). [CrossRef]
  6. J.-H. Lee, Y.-M. Huh, Y.-W. Jun, J.-W. Seo, J.-T. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh and J. Cheon, "Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging," Nat. Med. 13, 95-99 (2007). [CrossRef]
  7. D. E. Sosnovik and R. Weissleder, "Emerging concepts in molecular MRI," Curr. Opin. Biotechnol. 18, 4-10 (2007). [CrossRef]
  8. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178 (1991). [CrossRef] [PubMed]
  9. S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, "Optical probes and techniques for molecular contrast enhancement in coherence imaging," J. Biomed. Opt. 10, 041208 (2005). [CrossRef]
  10. B. E. Applegate and J. A. Izatt, "Molecular imaging of endogenous and exogenous chromophores using ground state recovery pump-probe optical coherence tomography," Opt. Express 14, 9142-9155 (2006). [CrossRef] [PubMed]
  11. H. Cang, T. Sun, Z.-Y. Li, J. Chen, B. J. Wiley, Y. Xia, and X. Li, "Gold nanocages as contrast agents for spectroscopic optical coherence tomography," Opt. Lett. 30, 3048-3050 (2005). [CrossRef] [PubMed]
  12. A. Agrawal, S. Huang, A. W. H. Lin, M.-H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, "Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells," J. Biomed. Opt. 11, 041121 (2006). [CrossRef] [PubMed]
  13. A. L. Oldenburg, M. H. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, "Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography," Opt. Express 14, 6724-6738 (2006). [CrossRef] [PubMed]
  14. D. C. Adler, S.-W. Huang, R. Huber, and J. G. Fujimoto, "Photothermal detection of gold nanoparticles using phase-sentivie optical coherence tomography," Opt. Express 16, 4376-4393 (2008). [CrossRef] [PubMed]
  15. J. N. Anker and R. Kopelman, "Magnetically modulated optical nanoprobes," Appl. Phys. Lett. 82, 1102-1104 (2003). [CrossRef]
  16. J. S. Aaron, J. Oh, T. A. Larson, S. Kumar, T. E. Milner, and K. V. Sokolov, "Increased optical contrast in imaging of epidermal growth factor receptor using magnetically actuated hybrid gold/iron oxide nanoparticles," Opt. Express 14, 12930-12943 (2006). [CrossRef] [PubMed]
  17. A. L. Oldenburg, J. R. Gunther, and S. A. Boppart, "Imaging magnetically labeled cells with magnetomotive optical coherence tomography," Opt. Lett. 30, 747-749 (2005). [CrossRef] [PubMed]
  18. A. L. Oldenburg, F. Jean-Jacques Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, "Magnetomotive contrast for in vivo optical coherence tomography," Opt. Express 13, 6597-6614 (2005). [CrossRef] [PubMed]
  19. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, J. A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30, 1162-1164 (2005). [CrossRef] [PubMed]
  20. J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, "Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography," Lasers Surg. Med. 39, 266-272 (2007). [CrossRef] [PubMed]
  21. M. M. Chan, W. Lu, F. M. Merchant, J. D. Iglehart, and P. L. Miron, "Gene expression profiling of NMU-induced rat mammary tumors: cross species comparison with human breast cancer," Carcinogenesis 26, 1343-1353 (2005). [CrossRef] [PubMed]
  22. B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. deBoer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 11, 3931-3944 (2005). [CrossRef]
  23. A. L. Oldenburg, W. Luo, and S. A. Boppart, "High-resolution in vivo nanoparticle imaging using magnetomotive optical coherence tomography," Proc. SPIE 6097, doi 10.1117/12.643609 (2006). [CrossRef]
  24. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Interferometric synthetic aperture microscopy," Nat. Phys. 3, 129-134 (2007). [CrossRef]
  25. A. M. Zysk, E. J. Chaney, and S. A. Boppart, "Refractive index of carcinogen-induced rat mammary tumours," Phys. Med. Biol. 51, 2165-2177 (2006). [CrossRef] [PubMed]
  26. J. Zhang, J. S. Nelson, and Z. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149 (2005). [CrossRef] [PubMed]
  27. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821-7840 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited