OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 15 — Jul. 21, 2008
  • pp: 11555–11567

Transformation-optical design of adaptive beam bends and beam expanders

M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith  »View Author Affiliations

Optics Express, Vol. 16, Issue 15, pp. 11555-11567 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1266 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the design of adaptive beam bends and beam splitters with arbitrary bend and split angles by use of finite embedded coordinate transformations. The devices do not exhibit reflection at the entrance or exit surfaces. It is shown that moderate and practically achievable values of the relative permittivity and permeability can be obtained for beam bends and splitters with both small and large bend radius. The devices are also discussed in the context of reconfigurable metamaterials, in which the bend and split angles can be dynamically tuned. The performance of adaptive beam bends and splitters is demonstrated in full wave simulations based on a finite-element method. Furthermore, the design of an adaptively adjustable transformation-optical beam expander/compressor is presented. It is observed that a pure transformation-optical design cannot result in a reflectionless beam expander/compressor.

© 2008 Optical Society of America

OCIS Codes
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(220.1770) Optical design and fabrication : Concentrators
(230.1360) Optical devices : Beam splitters
(160.3918) Materials : Metamaterials
(110.1080) Imaging systems : Active or adaptive optics
(230.3205) Optical devices : Invisibility cloaks

ToC Category:

Original Manuscript: June 4, 2008
Revised Manuscript: July 7, 2008
Manuscript Accepted: July 10, 2008
Published: July 18, 2008

M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, "Transformation-optical design of adaptive beam bends and beam expanders," Opt. Express 16, 11555-11567 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780 (2006). [CrossRef] [PubMed]
  2. U. Leonhardt, "Optical Conformal Mapping," Science 312, 1777 (2006). [CrossRef] [PubMed]
  3. D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express 14, 9794 (2006). [CrossRef] [PubMed]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977 (2006). [CrossRef] [PubMed]
  5. F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, "Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect," Opt. Lett. 32, 1069 (2007). [CrossRef] [PubMed]
  6. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, "Electromagnetic Wormholes and Virtual Magnetic Monopoles from Metamaterials," Phys. Rev. Lett. 99, 183901 (2007). [CrossRef] [PubMed]
  7. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics 1, 224 (2007). [CrossRef]
  8. B. Zhang, H. Chen, B.-I. Wu, and J. A. Kong, "Extraordinary Surface Voltage Effect in the Invisibility Cloak with an Active Device Inside," Phys. Rev. Lett. 100, 063904 (2008). [CrossRef] [PubMed]
  9. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, "Full-Wave Invisibility of Active Devices at All Frequencies," Commun. Math. Phys. 275, 749 (2007). [CrossRef]
  10. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, "Electromagnetic cloaking in the visible frequency range," http://arxiv.org/abs/0709.2862.
  11. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Nonmagnetic cloak with minimized scattering," Appl. Phys. Lett. 91, 111105 (2007). [CrossRef]
  12. G. W. Milton and N.-A. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. A 462, 3027 (2006). [CrossRef]
  13. A. Alu and N. Engheta, "Multifrequency Optical Invisibility Cloak with Layered Plasmonic Shells," Phys. Rev. Lett. 100, 113901 (2008). [CrossRef] [PubMed]
  14. W. Yan, M. Yan, Z. Ruan, and M. Qiu, "Perfect invisibility cloaks constructed by arbitrary coordinate transformations," http://arxiv.org/abs/0712.1694.
  15. T. Ochiai, U. Leonhardt, and J.C. Nacher, "A Novel Design of Dielectric Perfect Invisibility Devices," http://arxiv.org/abs/0711.1122.
  16. H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic Wave Interactions with a Metamaterial Cloak," Phys. Rev. Lett. 99, 063903 (2007). [CrossRef] [PubMed]
  17. Z. Ruan, M. Yan, C.W. Neff, and M. Qiu, " Ideal Cylindrical Cloak: Perfect but Sensitive to Tiny Perturbations," Phys. Rev. Lett. 99, 113903 (2007). [CrossRef] [PubMed]
  18. B. Wood and J. B. Pendry, "Metamaterials at zero frequency," J. Phys.: Condens. Matter 19, 076208 (2007). [CrossRef]
  19. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell???s equations," Photon. Nanostruct.: Fundam. Applic. 6, 87 (2008). [CrossRef]
  20. Y. Luo, H. Chen, J. Zhang, L. Ran, and J. A. Kong, "Design and analytically full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations," http://arxiv.org/abs/0712.2027.
  21. G.W. Milton, M. Briane, and J. R. Willis, "On cloaking for elasticity and physical equations with a transformation invariant form," New J. Phys. 8, 248 (2006). [CrossRef]
  22. S. Cummer and D. Schurig, "One path to acoustic cloaking," New J. Phys. 9, 45 (2007). [CrossRef]
  23. H. Chen and C. T. Chan, "Acoustic cloaking in three dimensions using acoustic metamaterials," Appl. Phys. Lett. 91, 183518 (2007). [CrossRef]
  24. S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, J. B. Pendry, M. Rahm, and A. Starr, "Scattering Theory Derivation of a 3D Acoustic Cloaking Shell," Phys. Rev. Lett. 100, 024301 (2008). [CrossRef] [PubMed]
  25. A. N. Norris, "Acoustic cloaking in 2D and 3D using finite mass," http://arxiv.org/abs/0802.0701v1.
  26. S. Zhang, D. A. Genov, C. Sun, and X. Zhang, "Cloaking of Matter Waves,", Phys. Rev. Lett. 100, 123002 (2008). [CrossRef] [PubMed]
  27. U. Leonhardt and T. G. Philbin, "General relativity in electrical engineering," New J. Phys. 8, 247 (2006). [CrossRef]
  28. U. Leonhardt and T. G. Philbin, "Quantum levitation by left-handed metamaterials," New J. Phys. 9, 254 (2007). [CrossRef]
  29. U. Leonhardt and T. G. Philbin, "Quantum optics of spatial transformation media," J. Opt. A: Pure Appl. Opt. 9, 289 (2007). [CrossRef]
  30. Y. Luo, J. Zhang, L. Ran, H. Chen, and J. A. Kong, "Controlling the Emission of Electromagnetic Sources by Coordinate transformation," http://arxiv.org/abs/0712.3776.
  31. H. Chen and C. T. Chan, "Transformation media that rotate electromagnetic fields," Appl. Phys. Lett. 90, 241105 (2007). [CrossRef]
  32. D. Schurig, J. B. Pendry, and D. R. Smith, "Transformation-designed optical elements," Opt. Express 15, 14772 (2007). [CrossRef] [PubMed]
  33. A. V. Kildishev and V. M. Shalaev, "Engineering space for light via transformation optics," Opt. Lett. 33, 43 (2008). [CrossRef]
  34. M. Tsang and D. Psaltis, "Magnifying perfect lens and superlens design by coordinate transformation," Phys. Rev. B 77, 035122 (2008). [CrossRef]
  35. S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, "Molding the flow of light at deep sub-wavelength scale," http://arxiv.org/abs/0712.3813.
  36. N. A. Zharova, I. V. Shadrivov, and Y. S. Kivshar, "Inside-out electromagnetic cloaking," Opt. Express 16, 4615 (2008). [CrossRef] [PubMed]
  37. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, "Optical design of reflectionless complex media by finite embedded coordinate transformations," Phys. Rev. Lett. 100,063903 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (371 KB)     
» Media 2: MOV (495 KB)     
» Media 3: MOV (632 KB)     
» Media 4: MOV (785 KB)     
» Media 5: MOV (3983 KB)     
» Media 6: MOV (3981 KB)     
» Media 7: MOV (367 KB)     
» Media 8: MOV (2656 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited