OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 15 — Jul. 21, 2008
  • pp: 11574–11588

Higher harmonic generation microscopy of in vitro cultured mammal oocytes and embryos

Cho-Shuen Hsieh, Shee-Uan Chen, Yen-Wei Lee, Yu-Shih Yang, and Chi-Kuang Sun  »View Author Affiliations


Optics Express, Vol. 16, Issue 15, pp. 11574-11588 (2008)
http://dx.doi.org/10.1364/OE.16.011574


View Full Text Article

Enhanced HTML    Acrobat PDF (690 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Oocyte and embryo selection governs the success of assisted reproductive technologies. The imaging tools applied for selecting embryos may need to contain several key properties: noninvasiveness, high 3D resolution, and the contrast capability to provide as much information about the embryos as possible, such as spindle fibers, zona pellucida, and organelles. Currently adopted imaging techniques can only provide one or two of these desired properties and are with limited contrast of the embryos. Some image techniques can even damage the embryos. Previous studies have shown that harmonic generation microscopy (HGM), a virtual-transition based technology, can provide noninvasive imaging in zebrafish embryos with a sub-cellular 3D resolution and a millimeter penetration depth, and thus could be a suitable tool for future oocyte and embryo selection of assisted reproductive technologies. However to evaluate HGM in clinical use, the intrinsic contrast origin of the second harmonic generation (SHG) and third harmonic generation (THG) inside the mammal embryos has to be studied. In this work we performed HGM studies on the in vitro cultured mouse oocytes and embryos by combining the SHG and THG modalities, with a focus on the contrast origin evaluation. Through the noninvasive HGM imaging, we can clearly identify various structures in the whole oocytes and embryos, including spindle fibers, zona pellucida, polar bodies, cell membranes, and the laminated organelles in the cells. The origin of the THG contrast was further confirmed through the standard staining studies. Through SHG signals, we could not only observe the spindle fibers when the oocytes were arrested at metaphase II or during the cleavage of the embryos, but can also distinguish and analyze the thickness of the three layers of the zona pellucida. Combining two different higher-harmonic generation modalities, SHG and THG, HGM successfully revealed the subcellular structures of the whole mouse embryos with a high 3D spatial resolution.

© 2008 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5810) Medical optics and biotechnology : Scanning microscopy
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: March 11, 2008
Revised Manuscript: May 17, 2008
Manuscript Accepted: June 13, 2008
Published: July 18, 2008

Virtual Issues
Vol. 3, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Cho-Shuen Hsieh, Shee-Uan Chen, Yen-Wei Lee, Yu-Shih Yang, and Chi-Kuang Sun, "Higher harmonic generation microscopy of in vitro cultured mammal oocytes and embryos," Opt. Express 16, 11574-11588 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11574


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Liu and D. L. Keefe, "Ageing-associated aberration in meiosis of oocytes from senescence-accelerated mice," Hum. Reprod. 17, 2678-2685 (2002). [CrossRef] [PubMed]
  2. S. Cooke, J. P. P. Tyler, G. L. Driscoll, "Meiotic spindle location and identification and its effect on embryonic cleavage plane and early development," Hum. Reprod. 18,2397-2405 (2003) [CrossRef] [PubMed]
  3. P. Saldeen and P. Sundström, "Nuclear status of four-cell preembryos predicts implantation potential in in vitro fertilization treatment cycles," Fertil. Steril. 84, 584-589 (2005). [CrossRef] [PubMed]
  4. J. Holte, L.  Berglund, K.  Milton, C.  Garello, G.  Gennarelli, A.  Revelli, T.  Bergh, "Construction of an evidence-based integrated morphology cleavage embryo score for implantation potential of embryos scored and transferred on day 2 after oocyte retrieval," Hum. Reprod. 22, 548-557 (2007) [CrossRef]
  5. W. T. Garside, J. R. L. D. Mola, J. A. Bucci, R. W. Tureck, S. Heyner, "Sequential analysis of zona thickness during in vitro culture of human zygotes: Correlation with embryo quality, age, and implantation," Mol. Reprod. Dev.47, 99-104 (1997). [CrossRef] [PubMed]
  6. A. Gabrielsen, P.R. Bhatnager, K. Petersen and S. Lindenberg, "Influence of zona pellucida thickness of human embryos on clinical pregnancy outcome following in vitro fertilization treatment," J. Assist. Reprod. Genet. 17, 323-328 (2000). [CrossRef] [PubMed]
  7. C. Pelletier, D. L. Keefe, and J. R. Trimarchi, "Noninvasive polarized light microscopy quantitatively distinguishes the multilaminar structure of the zona pellucida of living human eggs and embryos," Fertil. Steril. 81, 850-856 (2004). [CrossRef] [PubMed]
  8. Y. Shen, T. Stalf, C. Mehnert, U. Eichenlaub-Ritter, and H.-R. Tinneberg, "High magnitude of light retardation by the zona pellucida is associated with conception cycles," Hum. Reprod. 20, 1596-1606 (2005). [CrossRef] [PubMed]
  9. B. S.  Weakley, P.  Webb, and J. L.  James, "Cytochemistry of the Golgi apparatus in developing ovarian germ cells of the Syrian hamster," Cell Tissue Res. 220, 349-372 (1981). [CrossRef] [PubMed]
  10. R. D. Moreno, G. Schatten, and J. Ramalho-Santos, "Golgi apparatus dynamics during mouse oocyte in vitro maturation: effect of the membrane trafficking inhibitor brefeldin A," Biol. Reprod. 66, 1259-1266 (2002) [CrossRef] [PubMed]
  11. L. M. Mehlmann, M. Terasaki, L. A. Jaffe, D. Kline, "Reorganization of the endoplasmic reticulum during meiotic maturation of the mouse oocyte," Dev. Biol. 170, 607-615 (1995). [CrossRef] [PubMed]
  12. M. Terasaki, L. L. Runft, and A. R. Hand, "Changes in organization of the endoplasmic reticulum during Xenopus oocyte maturation and activation," Mol. Biol. Cell 12, 1103-1116 (2001) [PubMed]
  13. G. Fitzharris, P. Marangos, and J. Carroll, "Cell cycle-dependent regulation of structure of endoplasmic reticulum and inositol 1, 4, 5-trisphosphate-induced Ca2+ release in mouse oocytes and embryos," Mol. Biol. Cell 14, 288-301 (2003). [CrossRef] [PubMed]
  14. G. FitzHarris, P. Marangos, and J. Carroll, "Changes in endoplasmic reticulum structure during mouse oocyte maturation are controlled by the cytoskeleton and cytoplasmic dynein," Dev. Biol. 305, 133-144 (2007). [CrossRef] [PubMed]
  15. T.  Tokura, Y.  Noda, Y.  Goto, and T.  Mori, "Sequential observation of mitochondrial distribution in mouse oocytes and embryos," J. Assist. Reprod. Genet. 10, 417-426 (1993). [CrossRef] [PubMed]
  16. J. V. Blerkom, M. N. Runner, "Mitochondrial reorganization during resumption of arrested meiosis in the mouse oocyte," Am. J. Anat. 171, 335-355(1984). [CrossRef] [PubMed]
  17. J. V. Blerkom, P. Davis, V. Mathwig, and S. Alexander, "Domains of high-polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos" Hum. Reprod. 17, 393-406 (2002). [CrossRef] [PubMed]
  18. M. Shribak, J. LaFountain, D. Biggs, and S. Inoué, "Quantitative orientation-independent differential interference contrast (DIC) microscopy coupled with orientation-independent polarization microscopy," Microsc. Microanal. 13, 10-11 (2007). [PubMed]
  19. S. Inoué, and R. Oldenbourg, "Microtubule dynamics in mitotic spindle displayed by polarized light microscopy," Mol. Biol. Cell 9, 1603-1607 (1998). [PubMed]
  20. J. V. Blerkom and G. Henry, "Oocyte dysmorphism and aneuploidy in meiotically mature human oocytes after ovarian stimulation," Hum. Reprod. 7, 379-390 (1992). [PubMed]
  21. J. M. Squirell, D. L. Wokosin, J. G. White, and B. D. Bavister, "Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability," Nat. Biotechnol. 17, 763-767 (1999). [CrossRef]
  22. S.-Y. Chen, C.-S. Hsieh, S.-W. Chu, C.-Y. Ko, Y.-C. Chen, H.-J. Tsai, C.-H. Hu, C.-K. Sun, "Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo. "J. Biom. Opt. 11, 054022 1-8 (2006).
  23. C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, "Higher harmonic generation microscopy for developmental biology," J. Struct. Bio. 147, 19-30 (2004). [CrossRef]
  24. S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, H.-J. Tsai, and C.-K. Sun, "In vivo developmental biology study using noninvasive multi-harmonic generation microscopy," Opt. Express 11, 3093-3099 (2003). [CrossRef] [PubMed]
  25. V.  Barzda, C.  Greenhalgh, J. A. D. Au, S. Elmore, J. H. van Beek, and J. Squier, "Visualization of mitochondria in cardiomyocytes by simultaneous harmonic generation and fluorescence microscopy," Opt. Express  13, 8263-8276 (2005). [CrossRef] [PubMed]
  26. K. Konig, P. T. C. So, W. W. Mantulin, E. Gratton, "Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes," Opt. Lett. 22,135-136 (1997). [CrossRef] [PubMed]
  27. S.-U. Chen, Y.-L. Lien, and H.-F. Chen, "Open pulled straws for vitrification of mature mouse oocytes preserve patterns of meiotic spindles and chromosomes better than conventional straws," Hum. Reprod. 15, 2598-2603 (2000). [CrossRef] [PubMed]
  28. S.-U. Chen, Y.-R. Lien, Y.-Y. Cheng, H.-F. Chen, H.-N. Ho, and Y.-S. Yang, "Vitrification of mouse oocytes using closed pulled straws (CPS) achieves a high survival and preserves good patterns of meiotic spindles, compared with conventional straws, open pulled straws (OPS) and grids," Hum. Reprod. 16, 2350 - 2356 (2001). [PubMed]
  29. S.-U. Chen, T.-H. Lee, Y.-R. Lien, Y.-Y. Tsai, L.-J. Chang, and Y.-S. Yang, "Microsuction of blastocoelic fluid before vitrification increased survival and pregnancy of mouse expanded blastocysts, but pretreatment with the cytoskeletal stabilizer did not increase blastocyst survival," Fertil. Steril. 84, 1156-1162 (2005). [CrossRef] [PubMed]
  30. T. Y. F. Tsang, "Optical 3rd-harmonic generation at interfaces," Phys. Rev. A 52, 4116-4125 (1995). [CrossRef]
  31. S.-W. Chu, I.-H. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, "Nonlinear bio-photonic crystal effects revealed with multimodal nonlinear microscopy," J. Microsc.-Oxford 208, 190-200 (2002). [CrossRef]
  32. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, "Three dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 82, 493-508 (2002). [CrossRef]
  33. J. A. Squier, M. Muller, and G. J. Brakenhoff, and K. R. Wilson, "Third harmonic generation microscopy," Opt. Express 3, 315-324 (1998). [CrossRef] [PubMed]
  34. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, "Nonlinear scanning laser microscopy by third harmonic generation," App. Phy. Lett. 70, 922-924 (1997). [CrossRef]
  35. M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, "3D microscopy of transparent objects using third-harmonic generation," J. Microsc.-Oxford 191, 266-274 (1998). [CrossRef]
  36. S.-W. Chu, S.-P. Tai, C.-L. Ho, C.-H. Lin, and C.-K Sun, "High-resolution simultaneous three-photon fluorescence and third-harmonic-generation microscopy," Microsc. Res. Tech. 66, 193-197 (2005). [CrossRef] [PubMed]
  37. V. Barzda, "Visualization of mitochondria in cardiomyocytes by simultaneous harmonic generation and fluorescence microscopy," Opt. Express 13,8263-8276 (2005). [CrossRef] [PubMed]
  38. A. C. Millard, D. N. Fittinghoff, P. W. Wiseman, M. Muller, G. J. Brakenhoff, J. A. Squier, and K. R. Wilson, "Three dimensional, third harmonic microscopy of living systems," Biophys. J. 78, 800Plat Part 2 (2000).
  39. D. Debarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, "Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy," Nat. Methods 3, 47-53 (2006). [CrossRef]
  40. C.-H. Yu, S.-P. Tai, C.-T. Kung, I.-J. Wang, H.-C. Yu, H.-J. Huang, W.-J. Lee, Y.-F. Chan, and C.-K. Sun, "In vivo and ex vivo imaging of intra-tissue elastic fibers using third-harmonic-generation microscopy," Opt. Express 15, 11167-11177 (2007). [CrossRef] [PubMed]
  41. D. E. Hinkle, W. Wiersma, and S. G. Jurs, Applied Statistics for the Behavioral Sciences, 2nd ed., (Houghton Mifflin Co., 1988).
  42. C.-H. Yu, S.-P. Tai, C.-T. Kung, W.-J. Lee, Y.-F. Chan, H.-L. Liu, J.-Y. Lyu, C.-K. Sun, "Molecular third-harmonic-generation microscopy through resonance enhancement with absorbing dye," Opt. Lett. 33,387-389 (2008). [CrossRef] [PubMed]
  43. D. Keefe, P. Tran, C. Pellegrini, and R. Oldenbourg, "Polarized light microscopy and digital image processing identify a multilaminar structure of the hamster zona pellucida," Hum. Reprod. 12, 1250-1252 (1997). [CrossRef] [PubMed]
  44. J. C. Bleil and P. M. Wassarman, "Structure and function for the zona pellucida: identification and characterization of the proteins of the mouse oocyte's zona pellucida," Dev. Biol. 76, 185-202 (1980). [CrossRef] [PubMed]
  45. D. F. Albertini and S. L. Barrett, "Oocyte-somatic cell communication," Reproduction 61 (Suppl), 49-54 (2003). [PubMed]
  46. D. F. Albertini and V. Rider, "Patterns of intercellular connectivity in the mammalian cumulus-oocyte complex," Microsc. Res. Tech. 27, 125-133 (1994). [CrossRef] [PubMed]
  47. P. M. Motta, S. Makabe, T. Naguro, and S. Correr, "Oocyte follicle cells association during development of human ovarian follicle. A study by high resolution scanning and transmission electron microscopy," Arch. Histol. Cytol. 57, 369-394 (1994). [CrossRef] [PubMed]
  48. D. M. Phillips, R. M. Shalgi, "Surface properties of the zona pellucida," J. Exp. Zool. 213, 1-8 (1980). [CrossRef] [PubMed]
  49. P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, "Polarization-modulated second harmonic generation in collagen," Biophys. J. 82, 3330-3342 (2002). [CrossRef] [PubMed]
  50. S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, "Studies of ???(2)/???(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy," Biophys. J. 86, 3914-3922 (2004). [CrossRef] [PubMed]
  51. Y. Fujino, K. Ozaki, S. Yamamasu, F. Ito, I. Matsuoka, E. Hayashi, H. Nakamura, S. Ogita, E. Sato, and M. Inoue, "DNA fragmentation of oocytes in aged mice," Hum. Reprod. 11, 1480-1483 (1996). [PubMed]
  52. S. D. Spandorfer, P. H. Chung, I. Kligman, H. C. Liu, O. K. Davis, and Z. Rosenwal, "An analysis of the effect of age on implantation rates," J. Assist. Reprod. Genet. 17, 303-306 (2000). [CrossRef] [PubMed]
  53. J. P. de Bruin, M. Dorland, E. R. Spek, G. Posthuma, M. van Haaften, C. W. Looman, and E. R. te Velde, "Age-related changes in the ultrastructure of the resting follicle pool in human ovaries," Biol. Reprod. 70, 419-424 (2004). [CrossRef]
  54. J. Otsuki, A. Okada, K. Morimoto, Y. Nagai, and H. Kubo, "The relationship between pregnancy outcome and smooth endoplasmic reticulum clusters in MII human oocytes," Hum. Reprod. 19, 1591-1597 (2004). [CrossRef] [PubMed]
  55. G. A. Thouas, A. O. Trounson, and G. M. Jones, "Effect of Female Age on Mouse Oocyte Developmental Competence Following Mitochondrial Injury,"Biol. Reprod. 73, 366 - 373 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited