OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 15 — Jul. 21, 2008
  • pp: 11611–11617

Surface plasmon dynamics in arrays of subwavelength holes: the role of optical interband transitions

V. Halté, A. Benabbas, and J.-Y. Bigot  »View Author Affiliations

Optics Express, Vol. 16, Issue 15, pp. 11611-11617 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (153 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using femtosecond optical spectroscopy, we study the ultrafast dynamics of the surface plasmon polaritons in gold arrays of subwavelength holes. A large time dependent spectral broadening and shift of the surface plasmon resonances are reported. The experimental results are modeled by the diffraction of a transverse electromagnetic field through the nanostructure, taking into account both the electron dynamics near the interband transitions and the Drude-like conductivity of the metal. Our analysis, using either a theoretical or an experimentally determined dielectric function of gold, suggests that the losses propagation in plasmonic devices is strongly influenced by intrinsic and extrinsic electron scattering mechanisms.

© 2008 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(320.7150) Ultrafast optics : Ultrafast spectroscopy

ToC Category:
Optics at Surfaces

Original Manuscript: April 1, 2008
Revised Manuscript: April 23, 2008
Manuscript Accepted: April 24, 2008
Published: July 18, 2008

V. Halté, A. Benabbas, and J.-Y. Bigot, "Surface plasmon dynamics in arrays of subwavelength holes: the role of optical interband transitions," Opt. Express 16, 11611-11617 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998). [CrossRef]
  2. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998). [CrossRef]
  3. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114-1117 (2001). [CrossRef] [PubMed]
  4. A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate," Appl. Phys. Lett 84, 4661-4663 (2002). [CrossRef]
  5. J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength holes," Phys. Rev. B 68, 201306 (2003). [CrossRef]
  6. H. Cao, and A. Nahata, "Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures," Opt. Express 12, 1004-1010 (2004). [CrossRef] [PubMed]
  7. M. M. J. Treacy, "Dynamical diffraction in metallic optical gratings," Appl. Phys. Lett 75, 606-608 (1999). [CrossRef]
  8. Q. Cao and P. Lalanne, "Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 88, 057403 (2002). [CrossRef] [PubMed]
  9. D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, C. Lienau, "Microscopic Origin of Surface-Plasmon Radiation in Plasmonic Band-Gap Nanostructures," Phys. Rev. Lett. 91, 143901 (2003). [CrossRef] [PubMed]
  10. A. Dechant, A. Y. Elezzabi, "Femtosecond optical pulse propagation in subwavelength metallic slits," Appl. Phys. Lett. 84, 4678-4680 (2004). [CrossRef]
  11. A. Kubo, Y. S. Jung, H. K. Kim, H. Petek, "Femtosecond microscopy of localized and propagating surface plasmons in silver gratings," J. Phys. B: At. Mol. Opt. Phys. 40, S259-S272 (2007). [CrossRef]
  12. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes," Phys. Rev. Lett. 92, 183901 (2004). [CrossRef] [PubMed]
  13. J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, "Optical spectroscopy of nanometric holes in thin gold films," Nanolett. 4, 1003-1007 (2004). [CrossRef]
  14. I. Avrutsky, Y. Zhao, and V. Kochergin, "Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film," Opt. Lett. 25, 595-597 (2000). [CrossRef]
  15. A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, "Effects of hole depth on enhanced light transmission through subwavelength hole arrays," Appl. Phys. Lett. 81,4327-4329 (2002). [CrossRef]
  16. M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martin-Moreno, J. Bravo-Abad, F. J. Garcia-Vidal, "Enhanced millimeter-wave transmission through subwavelength hole arrays," Opt. Lett. 29, 2500-2502 (2004). [CrossRef] [PubMed]
  17. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).
  18. J.-Y. Bigot, J.-C. Merle, O. Crégut, and A. Daunois, "Electron Dynamics in Copper Metallic Nanoparticles Probed with Femtosecond Optical Pulses," Phys. Rev. Lett. 75, 4702-4705 (1995). [CrossRef] [PubMed]
  19. P. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Menning, M. Schmitt, and H. Schmidt, "Optically induced damping of the surface plasmon resonance in gold colloids," Phys. Rev. Lett. 78, 2192-2195 (1997). [CrossRef]
  20. R. D. Averitt, S. L. Westcott, and N. J. Halas, "Ultrafast electron dynamic in gold nanoshells," Phys. Rev. B 58, R10203-R10206 (1998). [CrossRef]
  21. V. Halté, J.-Y. Bigot, B. Palpant, M. Broyer, B. Prével, A. Pérez, "Size dependence of the energy relaxation in silver nanoparticles embedded in dielectric matrices," Appl. Phys. Lett. 75, 3799 (1999). [CrossRef]
  22. J. Lermé, B. Palpant, B. Prével, E. Cottancin, M. Pellarin, M. Treilleux, J.L. Vialle, A. Perez, and M. Broyer, Eur. Phys. J. D. 4, 95-108 (1998). [CrossRef]
  23. H. Petek, H. Nagano, and S. Ogawa, "Hot-electron dynamics in copper revisited: The d-band effect," Appl. Phys. B: Lasers and Optics 68, 369-375 (1999). [CrossRef]
  24. N. del Fatti, C. Flytzanis, and F. Vallée, "Ultrafast induced electron-surface scattering in a confined metallic system," Appl. Phys. B: Lasers and Optics 68, 433-437 (1999). [CrossRef]
  25. Y. Hamanaka, N. Hayashi, and A. Nakamura, "Dispersion curves of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal-glass composites," J. Opt. Soc. Am. B 20, 1227-1232 (2003). [CrossRef]
  26. A.  Benabbas, V.  Halté, and J.-Y.  Bigot, "Analytical model of the optical response of periodically structured metallic films," Opt. Express  13, 8730-8745 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-22-8730 [CrossRef] [PubMed]
  27. V.  Halté, A.  Benabbas, and J.-Y.  Bigot, "Optical response of periodically modulated nanostructures near the interband transition threshold of noble metals," Opt. Express  14, 2909-2920 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-7-2909. [CrossRef] [PubMed]
  28. S. A. Damanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study," Phys. Rev. B 67, 035424 (2003);S. A. Damanyan, M. Nevière, and A. V. Zayats, "Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes," Phys. Rev. B 70, 075103 (2004). [CrossRef]
  29. S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, "Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing," Phys. Rev. A 59, 2369-2384 (1999). [CrossRef]
  30. R. H. M. Groenenveld, R. Sprik, and A. Lagendijk, "Effect of a nonthermal electron distribution on the electron-phonon energy relaxation process in noble metals," Phys. Rev. B 45, 5079-5082 (1992). [CrossRef]
  31. W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, "Direct measurement of nonequilibrium electron-energy distributions in subpicosecond laser-heated gold films," Phys. Rev. Lett. 68, 2834-2837 (1992). [CrossRef] [PubMed]
  32. C. K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, "Femtosecond-tunable measurement of electron thermalization in gold, " Phys. Rev. B 50, 15337-15348 (1994) [CrossRef]
  33. J. -Y. Bigot, V. Halté, J. -C. Merle and A. Daunois, "Electron dynamics in metallic nanoparticles," Chem. Phys.  251, 181-203 (2000). [CrossRef]
  34. G. L. Eesley, "Observation of Nonequilibrium Electron Heating in Copper," Phys. Rev. Lett. 51, 2140-2143 (1983). [CrossRef]
  35. R. W. Schoenlein W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, "Femtosecond studies of nonequilibrium electronic processes in metals," Phys. Rev. Lett. 58, 1680-1683 (1987). [CrossRef] [PubMed]
  36. H. Ehrenreich and M. H. Cohen, "Self-Consistent Field Approach to the Many-Electron Problem," Phys. Rev. 115, 786-790 (1959). [CrossRef]
  37. D. Pines and P. Nozières, The Theory of Quantum Liquids (Benjamin, New York, 1966), Vol. 1.
  38. R. Rosei and D. W. Lynch, "Thermomodulation Spectra of Al, Au, and Cu," Phys. Rev. B 5, 3883-3894 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited