OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 15 — Jul. 21, 2008
  • pp: 11624–11636

All-optical switching in 2D silicon photonic crystals with low loss waveguides and optical cavities

Michele Belotti, Juan F. Galisteo-López, Sara De Angelis, Matteo Galli, Ivan Maksymov, Lucio Claudio Andreani, David Peyrade, and Yong Chen  »View Author Affiliations


Optics Express, Vol. 16, Issue 15, pp. 11624-11636 (2008)
http://dx.doi.org/10.1364/OE.16.011624


View Full Text Article

Enhanced HTML    Acrobat PDF (902 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A study of the optical transmission of low-loss W1.5 photonic crystal waveguides built on silicon membranes and operating at telecom wavelengths is presented. The feasibility of performing all-optical switching is demonstrated for W1.5 waveguides coupled with L3 cavities, systems amenable for incorporation in on-chip devices. Switching of waveguide transmission is achieved by means of optical excitation of free carriers using a 2.5 ns pump laser. Experimental results are reproduced by finite-difference time-domain simulations which model the response of the finite system and band structure calculations describing the infinite, ideal one.

© 2008 Optical Society of America

OCIS Codes
(130.4815) Integrated optics : Optical switching devices
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: April 15, 2008
Revised Manuscript: July 14, 2008
Manuscript Accepted: July 14, 2008
Published: July 18, 2008

Citation
Michele Belotti, Juan F. Galisteo Lòpez, Sara De Angelis, Matteo Galli, Ivan Maksymov, Lucio C. Andreani, David Peyrade, and Yong Chen, "All-optical switching in 2D silicon photonic crystals with low loss waveguides and optical cavities," Opt. Express 16, 11624-11636 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11624


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).
  2. K. Sakoda, Optical Properties Of Photonic Crystals (Springer, 2005).
  3. Y. Vlasov, M. O???Boyle, H. Hamann, and S. McNab, "Active control of slow light on a chip with photonic crystal waveguides." Nature (London) 438, 65 (2005). [CrossRef]
  4. I. M¨arki, M. Salt, H. Herzig, R. Stanley, L. El Melhaoui, P. Lyan, and J. Fedeli, "Optically tunable microcavity in a planar photonic crystal silicon waveguide buried in oxide," Opt. Lett. 31, 513 (2006). [CrossRef] [PubMed]
  5. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator." Nature (London) 435, 325 (2005). [CrossRef]
  6. B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, "Compact electro-optic modulator on silicon-oninsulator substrates using cavities with ultra-small modal volumes," Opt. Express 15, 3140 (2007). [CrossRef] [PubMed]
  7. K. ichi Umemori, Y. Kanamori, and K. Hane, "Photonic crystal waveguide switch with a microelectromechanical actuator," Appl. Phys. Lett. 89, 021102 (2006). [CrossRef]
  8. S. Leonard, H. van Driel, J. Schilling, and R. Wehrspohn, "Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection," Phys. Rev. B 66, 161102 (2002). [CrossRef]
  9. H. W. Tan, H. M. van Driel, S. L. Schweizer, R. B. Wehrspohn, and U. G¨osele, "Nonlinear optical tuning of a two-dimensional silicon photonic crystal," Phys. Rev. B(Condensed Matter and Materials Physics) 70, 205110 (2004). [CrossRef]
  10. V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature (London) 431, 1081 (2004). [CrossRef]
  11. V. Almeida, C. Barrios, R. Panepucci, M. Lipson, M. Foster, D. Ouzounov, and A. Gaeta, "All-optical switching on a silicon chip," Opt. Lett. 29, 2867 (2004). [CrossRef]
  12. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678 (2005). [CrossRef] [PubMed]
  13. F. Ndi, J. Toulouse, T. Hodson, and D. Prather, "All-optical switching in silicon photonic crystal waveguides by use of the plasma dispersion effect," Opt. Lett. 30, 2254 (2005). [CrossRef] [PubMed]
  14. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005). [CrossRef]
  15. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007). [CrossRef]
  16. X. Yang, C. Husko, C.W. Wong, M. Yu, and D.-L. Kwong, "Observation of femtojoule optical bistability involving Fano resonances in high-Q/V[sub m] silicon photonic crystal nanocavities," Appl. Phys. Lett. 91, 051113 (2007). [CrossRef]
  17. M. F¨orst, J. Niehusmann, T. Pl¨otzing, J. Bolten, T. Wahlbrink, C. Moormann, and H. Kurz, "High-speed alloptical switching in ion-implanted silicon-on-insulator microring resonators," Opt. Lett. 32, 2046 (2007). [CrossRef] [PubMed]
  18. D. Gerace and L. Andreani, "Low-loss guided modes in photonic crystal waveguides," Opt. Express 13, 4939 (2005). [CrossRef] [PubMed]
  19. M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, L. Andreani, M. Belotti, and Y. Chen, "Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance," Phys. Rev. B 72, 125322 (2005). [CrossRef]
  20. Q2. P. Velha, E. Picard, T. Charvolin, E. Hadji, J. Rodier, P. Lalanne, and D. Peyrade, "Ultra-High Q/V Fabry-Perot microcavity on SOI substrate," Opt. Express 15, 16090 (2007). [CrossRef] [PubMed]
  21. L. C. Andreani and D. Gerace, "Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method," Phys. Rev. B(Condensed Matter and Materials Physics) 73, 235114 (2006). [CrossRef]
  22. A. Taflove and S. Hagness, Computational electrodynamics: the finite-difference time-domain method (Artech House, 2005).
  23. J. Roden and S. Gedney, "Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microw. Opt. Tech. Letters 27, 334 (2000). [CrossRef]
  24. Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944 (2003). [CrossRef]
  25. K. Sokolowski-Tinten and D. von der Linde, "Generation of dense electron-hole plasmas in silicon," Phys. Rev. B 61, 2643 (2000). [CrossRef]
  26. T. G. Euser and W. L. Vos, "Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors," J. Appl. Phys. 97, 043102 (2005). [CrossRef]
  27. E. Palik, Handbook of Optical Constants of Solids, Vol. 1 (Academic Press, 2004).
  28. S. McNab, N. Moll, and Y. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11, 2927 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited