OSA's Digital Library

Optics Express

Optics Express

  • Vol. 16, Iss. 16 — Aug. 4, 2008
  • pp: 11691–11702

Increased surface plasmon resonance sensitivity with the use of double Fourier harmonic gratings

Nicolas Bonod, Evgeny Popov, and Ross C. McPhedran  »View Author Affiliations

Optics Express, Vol. 16, Issue 16, pp. 11691-11702 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (264 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A biomolecular sensor consisting of a thin metallic grating deposited on a glass prism is studied in the formalism of poles and zeros of the scattering matrix. Surface plasmon resonance is used to increase the sensitivity of the device with respect to a variation of the refractive index of the substrate. It is shown that a direct coupling between counter propagating surface plasmons using double-harmonic Fourier gratings leads to an enhancement of the sensitivity. The result of the stronger coupling is the transfer of the working point from the lower to the upper edge of the band gap in the dispersion diagram.

© 2008 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(130.6010) Integrated optics : Sensors
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: May 20, 2008
Revised Manuscript: July 14, 2008
Manuscript Accepted: July 16, 2008
Published: July 21, 2008

Virtual Issues
Vol. 3, Iss. 9 Virtual Journal for Biomedical Optics

Nicolas Bonod, Evgeny Popov, and Ross C. McPhedran, "Increased surface plasmon resonance sensitivity with the use of double Fourier harmonic gratings," Opt. Express 16, 11691-11702 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Kretschmann, "Determination of optical constants of metals by excitation of surface Plasmons," Z. Phys. 241, 313- (1971). [CrossRef]
  2. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philos. Mag. 4, 396-402 (1902)
  3. J. J. Cowan and E. T. Arakawa, "Dispersion of surface plasmons in dielectric-metal coatings on concave diffraction gratings," Z. Phys.  235, 97- (1970). [CrossRef]
  4. D. Maystre and R. C. McPhedran, "A detailed theoretical study of the anomalies of a sinusoidal diffraction grating," Optica Acta 21, 413-421 (1974). [CrossRef]
  5. M. Neviere, "The homogeneous problem," in Electromagnetic theory of gratings, R. Petit ed. (Springer-Verlag, 1980), ch.5
  6. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988)
  7. M. J. Jory, P. S. Vukusic, and J. R. Sambles, "Development of a prototype gas sensor using surface plasmon resonance on gratings," Sens. Actuators B 17, 203-209 (1994). [CrossRef]
  8. U. Schroter and D. Heitmann, "Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration," Phys. Rev. B 60, 4992-4999 (1999). [CrossRef]
  9. J. Homola, S. S. Yee and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Act. B 54, 3-15 (1999) [CrossRef]
  10. F. Pigeon, I. F. Salakhutdinov, A. V. Tishchenko, "Identity of long-range surface plasmons along asymetric structures and their potential for refractometric sensors," J. Appl. Phys. 90, 852-859 (2001) [CrossRef]
  11. C. J. Alleyne, A.G. Kirk, R. C. McPhedran, N-A. P. Nicorovici and D. Maystre, "Enhanced SPR sensitivity using periodic metallic structures," Opt. Express 15, 8163-8169 (2007). [CrossRef] [PubMed]
  12. D. Maystre, "General study of grating anomalies from electromagnetic surface modes", in Electromagnetic Surface Modes, A.D. Boardman, ed. (John Wiley, 1982), Chap. 17.
  13. M. Breidne and D. Maystre, "A systematic numerical study of Fourier gratings", J. Opt. 13, 71-79 (1982). [CrossRef]
  14. J. Chandezon, D. Maystre, and G. Raoult, "A new theoretical method for diffraction gratings and its numerical application," J.Opt. 11, 235-241 (1980). [CrossRef]
  15. L. Li, "Oblique-coordinate-system-based Chandezon method for modeling one-dimensionally periodic, multilayer, inhomogeneous, anisotropic gratings," J. Opt. Soc. Am. 16, 2521-2531 (1999). [CrossRef]
  16. D. Maystre and R. Petit, "Brewster incidence for metallic gratings," Opt. Commun. 17, 196-200 (1976). [CrossRef]
  17. M. C. Hutley and D. Maystre, "The total absorption of light by a diffraction grating," Opt. Commun. 19, 431-436 (1976) [CrossRef]
  18. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited