OSA's Digital Library

Optics Express

Optics Express

  • Vol. 16, Iss. 16 — Aug. 4, 2008
  • pp: 11709–11717

Optimization of photonic crystal cavity for chemical sensing

Soon-Hong Kwon, Thomas Sünner, Martin Kamp, and Alfred Forchel  »View Author Affiliations


Optics Express, Vol. 16, Issue 16, pp. 11709-11717 (2008)
http://dx.doi.org/10.1364/OE.16.011709


View Full Text Article

Enhanced HTML    Acrobat PDF (571 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We optimize photonic crystal cavities for enhancing the sensitivity to environmental changes by finite-difference time-domain method. For the heterostructure cavity created by local modulation of the air hole radius, the resonance shifts due to refractive index change of the background material are investigated. The shifts can be enhanced by reducing the photonic crystal slab thickness or introducing air holes in the cavity. The sensitivity of the thinner slab with central air holes is 310nm/RIU (refractive index unit). The heterostructure created in the slotted waveguide of thin PhC slab shows better sensitivity of 512nm/RIU owing to strong confinement of electric field in the low-index region.

© 2008 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: April 21, 2008
Revised Manuscript: May 22, 2008
Manuscript Accepted: July 9, 2008
Published: July 21, 2008

Citation
Soon-Hong Kwon, Thomas Sünner, Martin Kamp, and Alfred Forchel, "Optimization of photonic crystal cavity for chemical sensing," Opt. Express 16, 11709-11717 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-11709


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. A. Mortensen, S. Xiao, and J. Pedersen, "Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications," Microfluid Nanofluid 4, 117-127 (2008). [CrossRef]
  2. M. Loncar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003). [CrossRef]
  3. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity," Opt. Lett. 29, 1093-1095 (2004). [CrossRef] [PubMed]
  4. T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, "Photonic crystal cavity based gas sensor," Appl. Phys. Lett. 92, 261112 (2008). [CrossRef]
  5. A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, "Ultra-high-Q microcavity operation in H2O and D2O," Appl. Phys. Lett. 87, 151118-151120 (2005). [CrossRef]
  6. A. M. Armani and K. J. Vahala, "Heavy water detection using ultra-high-Q microcavities," Opt. Lett. 31, 1896-1898 (2006). [CrossRef] [PubMed]
  7. J. T. Robinson, L. Chen, and M. Lipson, "On-chip gas detection in silicon optical microcavities," Opt. Express 16, 4296-4301 (2008). [CrossRef] [PubMed]
  8. I. M. White and X. Fan, "On the performance quantification of resonant refractive index sensors," Opt. Express 16, 1020-1028 (2008). [CrossRef] [PubMed]
  9. U. Levy, K. Campbell, A. Groismanb, S. Mookherjea, and Y. Fainman, "On-chip microfluidic tuning of an optical microring resonator," Appl. Phys. Lett. 88, 111107-111109 (2006). [CrossRef]
  10. C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y-.H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (2007). [CrossRef]
  11. W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, "Atomic spectroscopy on a chip," Nat. Photonics 1, 331-335 (2007). [CrossRef]
  12. B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005). [CrossRef]
  13. Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, "High-Q nanocavity with a 2-ns photon lifetime," Opt. Express 15, 17206-17213 (2007). [CrossRef] [PubMed]
  14. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 1-3 (2006). [CrossRef]
  15. Srinivasan, K. , P. E. Barclay, and O. Painter,"Fabrication-tolerant high quality factor photonic crystal microcavities," Opt. Express 12, 1458-1463 (2004). [CrossRef] [PubMed]
  16. S. H. Kwon, S. H. Kim, S. K. Kim, Y. H. Lee, and S. B. Kim, "Small, low-loss heterogeneous photonic bandedge laser," Opt. Express 12, 5356-5361 (2004). [CrossRef] [PubMed]
  17. S. H. Kwon, T. Sünner, M. Kamp, and A. Forchel, "Ultrahigh-Q photonic crystal cavity created by modulating air hole radius of a waveguide," Opt. Express 16, 4605-4614 (2008). [CrossRef] [PubMed]
  18. V. A. Mandelshtama, and H. S. Taylor, "Harmonic inversion of time signals and its applications," J. Chem. Phys. 107, 6756-6769 (1997). [CrossRef]
  19. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Ultracompact Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004). [CrossRef] [PubMed]
  20. A. Di Falco, L. O�??Faolain, and T. F. Krauss, "Dispersion control and slow light in slotted photonic crystal waveguides," Appl. Phys. Lett. 92, 083501 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited