OSA's Digital Library

Optics Express

Optics Express

  • Vol. 16, Iss. 16 — Aug. 4, 2008
  • pp: 11776–11781

Real-time digital holographic microscopy using the graphic processing unit

Tomoyoshi Shimobaba, Yoshikuni Sato, Junya Miura, Mai Takenouchi, and Tomoyoshi Ito  »View Author Affiliations

Optics Express, Vol. 16, Issue 16, pp. 11776-11781 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (393 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Digital holographic microscopy (DHM) is a well-known powerful method allowing both the amplitude and phase of a specimen to be simultaneously observed. In order to obtain a reconstructed image from a hologram, numerous calculations for the Fresnel diffraction are required. The Fresnel diffraction can be accelerated by the FFT (Fast Fourier Transform) algorithm. However, real-time reconstruction from a hologram is difficult even if we use a recent central processing unit (CPU) to calculate the Fresnel diffraction by the FFT algorithm. In this paper, we describe a real-time DHM system using a graphic processing unit (GPU) with many stream processors, which allows use as a highly parallel processor. The computational speed of the Fresnel diffraction using the GPU is faster than that of recent CPUs. The real-time DHM system can obtain reconstructed images from holograms whose size is 512×512 grids in 24 frames per second.

© 2008 Optical Society of America

OCIS Codes
(090.1995) Holography : Digital holography
(090.5694) Holography : Real-time holography

ToC Category:

Original Manuscript: June 6, 2008
Revised Manuscript: July 15, 2008
Manuscript Accepted: July 21, 2008
Published: July 23, 2008

Virtual Issues
Vol. 3, Iss. 9 Virtual Journal for Biomedical Optics

Tomoyoshi Shimobaba, Yoshikuni Sato, Junya Miura, Mai Takenouchi, and Tomoyoshi Ito, "Real-time digital holographic microscopy using the graphic processing unit," Opt. Express 16, 11776-11781 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Schnars and W. Juptner, "Direct recording of holograms by a CCD target and numerical Reconstruction," Appl. Opt. 33, 179-181 (1994). [CrossRef] [PubMed]
  2. U. Schnars and W. Jueptner, Digital Holography - Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer 2005).
  3. O. K. Ersoy, Diffraction, Fourier Optics And Imaging (Wiley-Interscience 2006).
  4. N. Masuda, T. Ito, K. Kayama, H. Kono, S. Satake, T. Kunugi, and K. Sato, "Special purpose computer for digital holographic particle tracking velocimetry," Opt. Express 14, 603-608 (2006). [CrossRef] [PubMed]
  5. Y. Abe, N. Masuda, H. Wakabayashi, Y. Kazo, T. Ito, S. Satake, T. Kunugi, and K. Sato, "Special purpose computer system for flow visualization using holography technology," Opt. Express,  16, 7686-7692 (2008). [CrossRef]
  6. N. Masuda, T. Ito, T. Tanaka, A. Shiraki, and T. Sugie, "Computer generated holography using a graphics processing unit," Opt. Express 14, 587-592 (2008). [CrossRef]
  7. L. Ahrenberg, P. Benzie, M. Magnor, and J. Watson, "Computer generated holography using parallel commodity graphics hardware," Opt. Express 14, 7636-7641 (2006). [CrossRef]
  8. NVIDIA, "NVIDIA CUDA Compute Unified Device Architecture Programming Guide Version 1.1," NVIDIA (2007).
  9. NVIDIA, "CUDA FFT Library Version 1.1 Reference Documenta-tion," NVIDIA (2007).
  10. T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, "Numerical calculation library for diffraction integrals using the graphic processing unit: the GPU-based wave optics library," J. Opt. A: Pure Appl. Opt. 10, 075308 (2008), http://www.iop.org/EJ/abstract/1464-4258/10/7/075308/. [CrossRef]
  11. The GWO library, http://sourceforge.net/projects/thegwolibrary/.
  12. Wikipedia, http://en.wikipedia.org/wiki/Thread (computer science).
  13. FFTW Home Page, http://www.fftw.org/.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

Supplementary Material

» Media 1: MOV (362 KB)     
» Media 2: MOV (1034 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited