OSA's Digital Library

Optics Express

Optics Express

  • Vol. 16, Iss. 16 — Aug. 4, 2008
  • pp: 11808–11821

Impact of ablation efficiency reduction on post-surgery corneal asphericity: simulation of the laser refractive surgery with a flying spot laser beam

Young Kwon, Myoung Choi, and Steven Bott  »View Author Affiliations

Optics Express, Vol. 16, Issue 16, pp. 11808-11821 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (404 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We developed a rigorous simulation model to evaluate ablation algorithms and surgery outcomes in laser refractive surgery. The model (CASIM: Corneal Ablation SIMulator) simulates an entire surgical process,which includes calculating an ablation profile from measured wavefront errors, generating a shot pattern for a flying spot laser beam, simulation of the shot-by-shot ablation process based on a measured or modeled beam profile, and healing of the cornea after surgery. Using simulated post-surgery corneal shapes for various ablation parameters and beam fluences,we calculated angular dependence of ablation efficiency and the amount of increase in corneal asphericity. Without considering the effect of corneal healing, our result shows the following; 1) ablation efficiency reduction in the periphery depends on the peak fluence of the laser beam, 2) corneal asphericity increases even in the surgery using an ablation profile based on the exact Munnerlyn formula, contrary to previous reports, and 3) post-surgery corneal asphericity increases by a smaller amount in high fluence small Gaussian beam surgery than in low fluence truncated Gaussian beam.Our model can provide improved ablation profiles that compensate for the change of corneal asphericity and induction of spherical aberration in a flying spot laser system, resulting in better surgery outcomes in laser refractive surgeries.

© 2008 Optical Society of America

OCIS Codes
(170.1020) Medical optics and biotechnology : Ablation of tissue
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4470) Medical optics and biotechnology : Ophthalmology
(220.1000) Optical design and fabrication : Aberration compensation
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: April 28, 2008
Revised Manuscript: July 7, 2008
Manuscript Accepted: July 8, 2008
Published: July 23, 2008

Virtual Issues
Vol. 3, Iss. 9 Virtual Journal for Biomedical Optics

Young Kwon, Myoung Choi, and Steven Bott, "Impact of ablation efficiency reduction on post-surgery corneal asphericity: simulation of the laser refractive surgery with a flying spot laser beam," Opt. Express 16, 11808-11821 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. Krueger and S. Trokel, "Quantitation of Corneal Ablation by Ultraviolet Laser Light," Arch. Ophthalmol. 103, 1741-1742 (1985). [CrossRef] [PubMed]
  2. F. Manns, J.-H. Shen, P. Söderberg, T. Matsui, and J.-M. Parel, "Development of an algorithm for corneal reshaping with a scanning laser beam," Appl. Opt. 34, 4600-4608 (1995). [CrossRef] [PubMed]
  3. M. Mrochen, M. Kaemmerer, and T. Seiler, "Wavefront-guided Laser in situ Keratomileusis: Early Results in Three Eyes," J. Refract. Surg. 16, 116-121 (2000). [PubMed]
  4. E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular Aberrations before and after Myopic Corneal Refractive Surgery: LASIK-induced changes measured with Laser Ray Tracing," IOVS 42, 1396-1403 (2001).
  5. S. Marcos, S. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK Surgery for Myopia from Total and Corneal Aberration Measurements," IOVS 42, 3349-3356 (2001).
  6. C. B. O'Donnell, J. Kemner, and FrancisE. O'Donnell Jr., "Ablation smoothness as a function of excimer laser delivery system," J. Cataract. Refract. Surg. 22, 682-685 (1996). [PubMed]
  7. B. Muller, T. Boeck, and C. Hartmann, "Effect of excimer laser beam delivery and beam shaping on corneal sphericity in photorefractive keratectomy," J. Cataract. Refract. Surg. 30, 464-470 (2004). [CrossRef] [PubMed]
  8. M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, "Increased higher-order optical aberrations after laser refractive surgery: A problem of subclinical decentration," J. Cataract. Refract. Surg. 27, 362-369 (2001). [CrossRef] [PubMed]
  9. M. Mrochen, R. R. Krueger, M. Bueeler, and T. Seiler, "Aberration-sensing and Wavefront-guided Laser in situ Keratomileusis: Management of Decentered Ablation," J. Refract. Surg. 18, 418-429 (2002). [PubMed]
  10. N. M. Taylor, R. H. Eikelboom, P. P. v. Sarloos, and P. G. Reid, "Determining the accuracy of an Eye Tracking System for Laser Refractive Surgery," J. Refract. Surg. 16, S643-S646 (2000). [PubMed]
  11. M. Bueeler, M. Mrochen, and T. Seiler, "Effect of spot size, ablation depth, and eye-tracker latency on the optical outcome of corneal laser surgery with a scanning spot laser," in Ophthalmic Technologies XIII (SPIE, 2003), pp. 150-160.
  12. D. Zadok, C. Carrillo, F. Missiroli, S. Litwak, N. Robledo, and A. S. Chayet, "The Effect of Corneal Flap on Optical Aberrations," Am. J. Ophthalmol. 138, 190-193 (2004). [CrossRef] [PubMed]
  13. M. Mrochen, and T. Seiler, "Influence of Corneal Curvature on Calculation of Ablation Patterns used in Photorefractive Laser Surgery," J. Refract. Surg. 17, S584-S587 (2001). [PubMed]
  14. P. S. Hersh, K. Fry, and J. W. Blaker, "Spherical aberration after laser in situ keratomileusis and photorefractive keratectomy Clinical results and theoretical models of etiology," J. Cataract. Refract. Surg. 29, 2096-2104 (2003). [CrossRef] [PubMed]
  15. J. R. Jimenez, R. G. Anera, L. J. d. Barco, and E. Hita, "Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea," Appl. Phys. Lett. 81, 1521-1523 (2002). [CrossRef]
  16. R. G. Anera, J. R. Jiménez, L. J. d. Barco, and E. Hita, "Changes in corneal asphericity after laser refractive surgery, including reflection losses and nonnormal incidence upon the anterior cornea," Opt. Lett. 28, 417-419 (2003). [CrossRef] [PubMed]
  17. D. Cano, S. Barbero, and S. Marcos, "Comparison of real and computer-simulated outcomes of LASIK refractive surgery," J. Opt. Soc. Am. A 21, 926-936 (2004). [CrossRef]
  18. J. R. Jiménez, F. Rodríguez-Marín, R. G. Anera, and L. J. -d. Barco, "Deviations of Lambert-Beer's law affect corneal refractive parameters after refractive surgery," Opt. Express 14, 5411-5417 (2006). [CrossRef] [PubMed]
  19. C. Dorronsoro, D. Cano, J. Merayo-Lloves, and S. Marcos, "Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape," Opt. Express 14, 6142-6156 (2006). [CrossRef] [PubMed]
  20. C. Roberts, "Biomechanics of the Cornea and Wavefront guided Laser Refractive Surgery," J. Refract. Surg. 18, S589-S592 (2002). [PubMed]
  21. D. Huang, M. Tang, and R. Shekhar, "Mathematical Model of Corneal Surface Smoothing after Laser Refractive Surgery," Am. J. Ophthal. 135, 267-278 (2003). [CrossRef] [PubMed]
  22. C. Roberts, "Biomechanical customization: The next generation of laser refractive surgery," J. Cataract. Refract. Surg. 31, 2-5 (2005). [CrossRef] [PubMed]
  23. G. Yoon, S. MacRae, D. R. Williams, and I. G. Cox, "Causes of spherical aberration induced by laser refractive surgery," J. Cataract. Refract. Surg. 31, 127-135 (2005). [CrossRef] [PubMed]
  24. C. R. Munnerlyn, S. J. Koons, and J. Marshall, "Photorefractive keratectomy: A technique for laser refractive surgery," J. Cataract. Refract. Surg. 14, 46-52 (1988). [PubMed]
  25. R. W. Frey, J. H. Burkhalter, and G. P. Gray, "Laser Sculpting System," (2001), US Patent #6,261,220.
  26. D. Gatinel, T. Hoang-Xuan, and D. T. Azar, "Determination of Corneal Asphericity after Myopia Surgery with the Excimer Laser: A Mathematical Model," IOVS 42, 1736-1742 (2001).
  27. J. R. Jiménez, R. G. Anera, and L. J. d. Barco, "Equation for Corneal Asphericity After Corneal Refractive Surgery," J. Refract. Surg. 19, 65-69 (2003). [PubMed]
  28. S. Marcos, D. Cano, and S. Barbero, "Increase in Corneal Asphericity After Standard Laser in situ Keratomileusis for Myopia is not Inherent to the Munnerlyn Algorithm," J. Refract. Surg. 19, S592-S596 (2003). [PubMed]
  29. A. Vogel and V. Venugopalan, "Mechanisms of Pulsed Laser Ablation of Biological Tissues," Chem. Rev. 103, 577-644 (2003). [CrossRef] [PubMed]
  30. T. F. Deutsch and M. W. Geis, "Self-developing UV photoresist using excimer laser exposure," J. Appl. Phys. 54, 7201-7204 (1983). [CrossRef]
  31. B. Fisher and D. Hahn, "Development and Numnerical Solution of a Mechanistic Model for Corneal Tissue Ablation with the 193-nm Argon Fluoride Excimer Laser," J. Opt. Soc. Am. A 24, 265-277 (2007). [CrossRef]
  32. S. J. Orfanidis, Electromagnetic Waves & Antennas (2004), http://www.ece.rutgers.edu/~orfanidi/ewa/.
  33. R. W. Frey, J. H. Burkhalter and G. P. Gray, " Laser Sculpting Method and System," US Patent 5,849,006 (1998).
  34. C. Dorronsoro, J. Merayo-Lloves, and S. Marcos, "An Experimental Correction Factor of Radial Laser Efficiency Losses in Corneal Refractive Surgery," IOVS  47 E-Abstract 3611 (2006).
  35. S. Marcos, "Spherical Aberration: Biomechanics or Physical Laser Effects?," presented in Wavefront Congress 2006 Meeting (Nassau, Bahamas. January 06, 2006).
  36. J. R. Jimenez, R. G. Anera, J. A. Dıaz, and F. Perez-Ocon, "Corneal asphericity after refractive surgery when the Munnerlyn formula is applied," J. Opt. Soc. Am. A 21, 98-103 (2004). [CrossRef]
  37. R. G. Anera, J. R. Jimenez, L. J. d. Barco, J. Bermudez and E. Hita, "Changes in corneal asphericity after laser in situ keratomileusis," J. Cataract. Refract. Surg. 29, 762-768 (2003). [CrossRef] [PubMed]
  38. Y. Kwon and S. Bott, "Post-surgery asphericity and spherical aberration due to ablation efficiency reduction and corneal remodeling in refractive surgeries," in prep. (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited