OSA's Digital Library

Optics Express

Optics Express

  • Vol. 16, Iss. 16 — Aug. 4, 2008
  • pp: 11920–11929

Surface emission from episide-down short distributed-feedback quantum cascade lasers

Stephan Schartner, Maximilian Austerer, Werner Schrenk, Aaron Maxwell Andrews, Pavel Klang, and Gottfried Strasser  »View Author Affiliations

Optics Express, Vol. 16, Issue 16, pp. 11920-11929 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1012 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Increased coupling is observed in distributed-feedback quantum cascade lasers when placing a shallow second order grating between a continuous surface-plasmon layer and the active region. The combined effect of an air cladding and a metallic layer on the opposite sides of the waveguide increases the overlap with the grating region resulting in calculated coupling coefficients up to 100 cm-1. The waveguide design was implemented by Au thermo-compression bonding after grating formation and subsequent backside processing of ridges with air claddings. Lasers as short as 176 μm show single-mode behavior with a side-mode-suppression-ratio of 20 dB and thresholds (10 kA/cm2) as well as output powers (> 150 mW) close to Fabry-Pérot device performances are reached for 360 μm long devices.

© 2008 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(250.7270) Optoelectronics : Vertical emitting lasers
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 13, 2008
Revised Manuscript: June 12, 2008
Manuscript Accepted: June 20, 2008
Published: July 25, 2008

Stephan Schartner, Maximilian Austerer, Werner Schrenk, Aaron M. Andrews, Pavel Klang, and Gottfried Strasser, "Surface emission from episide-down short distributed-feedback quantum cascade lasers," Opt. Express 16, 11920-11929 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum Cascade Laser," Science 264, 553-556 (1994). [CrossRef] [PubMed]
  2. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, "Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature," Science 295, 301-305 (2002). [CrossRef] [PubMed]
  3. A. Evans, S. R. Darvish, S. Slivken, J. Nguyen, Y. Bai, and M. Razeghi, "Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency," Appl. Phys. Lett. 91, 071101 (2007). [CrossRef]
  4. C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X. Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, "Room-temperature continuous-wave operation of long wavelength (λ = 9.5 l µm) MOVPE-grown quantum cascade lasers," Electron. Lett. 43, 19 (2007).
  5. A. A. Kosterev and F. K. Tittel, "Chemical Sensors based on Quantum Cascade Lasers," IEEE J. Quantum Electron. 38, 582-591 (2002). [CrossRef]
  6. G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, "Grating-tuned external-cavity quantum-cascade semiconductor lasers," Appl. Phys. Lett. 78, 2834-2836 (2001). [CrossRef]
  7. R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, "External cavity quantum-cascade laser tunable from 8.2 to 10.4 µm using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006). [CrossRef]
  8. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Distributed feedback quantum cascade lasers," Appl. Phys. Lett. 70, 2670-2672 (1997). [CrossRef]
  9. S. R. Darvish, S. Slivken, A. Evans, J. S. Yu, and M. Razeghi, "Room-temperature, high-power, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ~ 9.6 µm," Appl. Phys. Lett. 88, 201114 (2006). [CrossRef]
  10. S. Golka, C. Pflügl, W. Schrenk, and G. Strasser, "Quantum cascade lasers with lateral double-sided distributed feedback grating," Appl. Phys. Lett. 86, 111103 (2005). [CrossRef]
  11. K. Kennedy, A. B. Krysa, J. S. Roberts, K. M. Groom, R. A. Hogg, D. G. Revin, L. R. Wilson, and J. W. Cockburn, "High performance InP-based quantum cascade distributed feedback lasers with deeply etched lateral gratings," Appl. Phys. Lett. 89, 201117 (2006). [CrossRef]
  12. A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, "Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies," Appl. Phys. Lett. 89, 141116 (2006). [CrossRef]
  13. B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy," Appl. Phys. Lett. 91, 231101 (2007). [CrossRef]
  14. D. Hofstetter, J. Faist, M. Beck, and U. Oesterle, "Surface-emitting 10.1 µm quantum-cascade distributed feedback lasers," Appl. Phys. Lett. 75, 3769-3771 (1999). [CrossRef]
  15. V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. Painter, L. R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861-14869 (2007). [CrossRef] [PubMed]
  16. W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, "Surface-emitting distributed feedback quantum-cascade lasers," Appl. Phys. Lett. 77, 2086-2088 (2000). [CrossRef]
  17. C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211102 (2005). [CrossRef]
  18. H. Kogelnik and C. V. Shank, "Coupled-Wave Theory of Distributed Feedback Lasers," J. Appl. Phys. 43, 2327-2335 (1972). [CrossRef]
  19. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, D. M. Tennant, A. M. Sergent, D. I. Sivco, A. Y. Cho, and F. Capasso, "Quantum Cascade Surface-Emitting Photonic Crystal Laser," Science 302, 1374-1377 (2003). [CrossRef] [PubMed]
  20. A. Lyakha, P. Zory, M. D�??Souza, D. Botez, and D. Bour, "Substrate-emitting, distributed feedback quantum cascade lasers," Appl. Phys. Lett. 91, 181116 (2006). [CrossRef]
  21. N. Finger, W. Schrenk, and E , Gornik, "Analysis of TM-Polarized DFB Laser Structures with Metal Surface Gratings," IEEE J. Quantum Electron. 36, 780-786 (2000). [CrossRef]
  22. C. Pflügl, W. Schrenk, S. Anders, G. Strasser, C. Becker, C. Sirtori, Y. Bonetti, and A. Muller, "High-temperature performance of GaAs-based bound-to-continuum quantum-cascade lasers," Appl. Phys. Lett. 83, 4698-4700 (2003). [CrossRef]
  23. C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, and U. Oesterle, "GaAs/AlxGa1-xAs quantum cascade lasers," Appl. Phys. Lett. 73, 3486-3488 (1998). [CrossRef]
  24. B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, "Terahertz quantum-cascade laser at λ �?? 100 µm using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003). [CrossRef]
  25. S. Golka, S. Schartner, W. Schrenk, and G. Strasser, "Low bias reactive ion etching of GaAs with a SiCl4/N2/O2 time-multiplexed process," J. Vac. Sci. Technol. B 25, 839-844 (2007). [CrossRef]
  26. M. Klanjšek Gunde and M. Ma�?ek, "Infrared Optical Constants and Dielectric Response Functions of Silicon Nitride," Phys. Status Solidi. A 183, 439-449 (2001). [CrossRef]
  27. M. A. Afromowitz, "Thermal conductivity of Ga1-xAlxAs alloys," J. Appl. Phys. 44, 1292-1294 (1972). [CrossRef]
  28. A. K. Saxena, "Electron mobility in Ga1-xAlxAs alloys "Phys. Rev. B 24, 3295-3302 (1981). [CrossRef]
  29. N. Chand, T. Henderson, J. Klem, W. T. Masselink, R. Fischer, Y. Chang, and H. Morkoc, "Comprehensive study of Si-dopedAlxGa1-xAs (x = 0 to 1): Theory and experiments," Phys. Rev. B 30, 4484-4492 (1984).
  30. R. J. Noll and S. H. Macomber, "Analysis of grating surface emitting lasers," IEEE J. Quantum Electron. 26, 456-466 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited