OSA's Digital Library

Optics Express

Optics Express

  • Vol. 16, Iss. 16 — Aug. 4, 2008
  • pp: 11995–12001

Reconfigurable multimode photonic-crystal waveguides

Hamza Kurt and David S. Citrin  »View Author Affiliations


Optics Express, Vol. 16, Issue 16, pp. 11995-12001 (2008)
http://dx.doi.org/10.1364/OE.16.011995


View Full Text Article

Enhanced HTML    Acrobat PDF (348 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the design and analysis of a novel reconfigurable photonic-crystal waveguide (PCW). The predefined waveguide is the result of the refractive-index variation of three rows of holes that can be obtained by the infiltration of liquids within what are otherwise air holes in a two-dimensional triangular-lattice photonic crystal. We compute the power transmission through the reconfigurable PCWs as well as through arbitrary waveguide bends. The advantages of writing reconfigurable PCW of a multimode nature are highlighted. We demonstrate the necessity to infiltrate high-refractive-index substances to obtain efficient power transfer via reconfigurable manner.

© 2008 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Photonic Crystals

History
Original Manuscript: April 25, 2008
Revised Manuscript: July 4, 2008
Manuscript Accepted: July 7, 2008
Published: July 25, 2008

Citation
Hamza Kurt and David S. Citrin, "Reconfigurable multimode photonic-crystal waveguides," Opt. Express 16, 11995-12001 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-11995


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Molding the Flow of Light (Princeton, New Jersey: Princeton University Press, 1995).
  2. O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O'Brien, and P. D. Dapkus, "Lithographic tuning of a two-dimensional photonic crystal laser array," IEEE Photon. Technol. Lett. 12, 1126-1128 (2000). [CrossRef]
  3. P. Halevi and F. Ramos-Mendieta, "Tunable photonic crystals with semiconducting constituents," Phys. Rev. Lett. 85, 1875-1878 (2000). [CrossRef] [PubMed]
  4. H. Takeda and K. Yoshino, "Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects," Phys. Rev. B 67, 073106 (1-4) (2003). [CrossRef]
  5. H. M. H. Chong and R. M. De La Rue, "Tuning of photonic crystal waveguide microcavity by thermooptic effect," IEEE Photon. Technol. Lett. 16, 1528-1530 (2004). [CrossRef]
  6. T. Yasuda, Y. Tsuji, and M. Koshiba, "Tunable light propagation in photonic crystal coupler filled with liquid crystal," IEEE Photon. Technol. Lett. 17, 55-57 (2005). [CrossRef]
  7. F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, "Rewritable photonic circuits," Appl. Phys. Lett. 89, 211117 (1-3) (2006). [CrossRef]
  8. D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006). [CrossRef] [PubMed]
  9. M. Lon�?ar, B. G. Lee, L. Diehl, M. A. Beklin, F. Capasso, M. Giovannini, J. Faist, and E. Gini, "Design and fabrication of photonic crystal quantum cascade lasers for optofluidics," Opt. Express 15, 4499-4514 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-4499. [CrossRef] [PubMed]
  10. S. S. Xiao and N. A. Mortensen "Proposal of highly sensitive optofluidic sensors based on dispersive photonic crystal waveguides," J. Opt. A: Pure Appl. Opt. 9, S463-S467 (2007). [CrossRef]
  11. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59-61 (2006). [CrossRef] [PubMed]
  12. H. Kurt and D. S. Citrin, "Coupled-resonator optical waveguide for biochemical sensing of nanoliter volumes of analyte in the terahertz region," Appl. Phys. Lett. 87, 241119 (1-3) (2005). [CrossRef]
  13. C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (1-3) (2007). [CrossRef]
  14. C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007). [CrossRef]
  15. A. Taflove, Computational Electrodynamics - The Finite-Difference Time-Domain Method (Norwood, Massachusetts: Artech House, 2000).
  16. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994). [CrossRef]
  17. H. Kurt and D. S. Citrin, "Photonic-crystal heterostructure waveguides," IEEE J. Quantum Electron. 43, 78-84 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited