OSA's Digital Library

Optics Express

Optics Express

  • Vol. 16, Iss. 16 — Aug. 4, 2008
  • pp: 12102–12107

Pulse breaking recovery in fiber lasers

L. M. Zhao, D. Y. Tang, H. Y. Tam, and C. Lu  »View Author Affiliations

Optics Express, Vol. 16, Issue 16, pp. 12102-12107 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (367 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Pulse breaking recovery is numerically demonstrated in dispersion-managed fiber lasers designed for generating high peak power ultrashort optical pulses. It is shown that due to the cavity boundary condition, local pulse breaking can be absorbed by the pulse propagation in erbium-doped fiber with normal dispersion. Consequently, high peak power transform-limited pulses beyond the gain-bandwidth limitation could be generated.

© 2008 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(140.3510) Lasers and laser optics : Lasers, fiber
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 8, 2008
Revised Manuscript: June 25, 2008
Manuscript Accepted: July 13, 2008
Published: July 28, 2008

L. M. Zhao, D. Y. Tang, H. Y. Tam, and C. Lu, "Pulse breaking recovery in fiber lasers," Opt. Express 16, 12102-12107 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, "77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser," Opt. Lett. 18, 1080-1082 (1993). [CrossRef] [PubMed]
  2. F. . Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004). [CrossRef] [PubMed]
  3. L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, "Ultrashort pulse generation in lasers by nonlinear pulse amplification and compression," Appl. Phys. Lett. 90, 051102 (2007). [CrossRef]
  4. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010-6013 (2000). [CrossRef] [PubMed]
  5. W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, "Optical wave breaking of pulses in nonlinear optical fibers," Opt. Lett. 10, 457-459 (1985). [CrossRef] [PubMed]
  6. D. Anderson, M. Desaix, M. Lisak, and M. L. Quiroga-Teixeiro, "Wave breaking in nonlinear-optical fibers," J. Opt. Soc. Am. B 9, 1358-1361 (1992). [CrossRef]
  7. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, "Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers," Opt. Lett. 8, 289-291 (1983). [CrossRef] [PubMed]
  8. J. C. Bronski and J. N. Kutz, "Numerical simulation of the semi-classical limit of the focusing nonlinear Schrödinger equation," Phys. Lett. 254, 325-336 (1999). [CrossRef]
  9. D. Krylov, L. Leng, K. Bergman, J. C. Bronski, and J. N. Kutz, "Observation of the breakup of a prechirped N-soliton in an optical fiber," Opt. Lett. 24, 1191-1193 (1999). [CrossRef]
  10. D. Y. Tang, L. M. Zhao, B. Zhao, A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A 72, 043816 (2005). [CrossRef]
  11. L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen, "Noise-like pulse in a gain-guided soliton fiber laser," Opt. Express,  15, 2145-2150 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

Supplementary Material

» Media 1: MOV (731 KB)     
» Media 2: MOV (442 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited