OSA's Digital Library

Optics Express

Optics Express

  • Vol. 16, Iss. 16 — Aug. 4, 2008
  • pp: 12190–12200

Image-guided Raman spectroscopic recovery of canine cortical bone contrast in situ

Subhadra Srinivasan, Matthew Schulmerich, Jacqueline H. Cole, Kathryn A. Dooley, Jaclynn M. Kreider, Brian W. Pogue, Michael D. Morris, and Steven A. Goldstein  »View Author Affiliations

Optics Express, Vol. 16, Issue 16, pp. 12190-12200 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (802 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Raman scattering provides valuable biochemical and molecular markers for studying bone tissue composition with use in predicting fracture risk in osteoporosis. Raman tomography can image through a few centimeters of tissue but is limited by low spatial resolution. X-ray computed tomography (CT) imaging can provide high-resolution image-guidance of the Raman spectroscopic characterization, which enhances the quantitative recovery of the Raman signals, and this technique provides additional information to standard imaging methods. This hypothesis was tested in data measured from Teflon® tissue phantoms and from a canine limb. Image-guided Raman spectroscopy (IG-RS) of the canine limb using CT images of the tissue to guide the recovery recovered a contrast of 145:1 between the cortical bone and background. Considerably less contrast was found without the CT image to guide recovery. This study presents the first known IG-RS results from tissue and indicates that intrinsically high contrasts (on the order of a hundred fold) are available.

© 2008 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5660) Medical optics and biotechnology : Raman spectroscopy

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: May 27, 2008
Revised Manuscript: July 23, 2008
Manuscript Accepted: July 24, 2008
Published: July 30, 2008

Virtual Issues
Vol. 3, Iss. 9 Virtual Journal for Biomedical Optics

Subhadra Srinivasan, Matthew Schulmerich, Jacqueline H. Cole, Kathryn A. Dooley, Jaclynn M. Kreider, Brian W. Pogue, Michael D. Morris, and Steven A. Goldstein, "Image-guided Raman spectroscopic recovery of canine cortical bone contrast in situ," Opt. Express 16, 12190-12200 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. P. Poplack, K. D. Paulsen, A. Hartov, P. M. Meaney, B. W. Pogue, T. D. Tosteson, M. R. Grove, S. K. Soho, and W. A. Wells, "Electromagnetic breast imaging: average tissue property values in women with negative clinical findings," Radiology 231, 571-580 (2004). [CrossRef] [PubMed]
  2. C. Carpenter, B. W. Pogue, S. Jiang, H. Dehghani, X. Wang, K. D. Paulsen, W. A. Wells, J. Forero, C. Kogel, J. Weaver, S. P. Poplack, and P. A. Kaufman, "Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water & scatterer Size," Opt. Lett. 32, 933-935 (2007). [CrossRef] [PubMed]
  3. Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, "Coregistered tomographic x-ray and optical breast imaging: initial results," J Biomed. Opt. 10, 024033-0240339 (2005). [CrossRef] [PubMed]
  4. Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, "Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction," Radiology 237, 57-66 (2005). [CrossRef] [PubMed]
  5. S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, "Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization," Opt. Express 15, 4066-4082 (2007). [CrossRef] [PubMed]
  6. B. Brooksby, Dehghani, H. , Pogue, B. W. , Paulsen, K. D. , "Near infrared (NIR) tomography breast image reconstruction with apriori structural information from MRI: algorithm development for reconstructing heterogeneities," IEEe J. Sel. Top. Quantum Electron. on Lasers in Medicine and Biology  9, 199-209 (2003). [CrossRef]
  7. H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, "Three-dimensional optical-tomography: resolution in small-object imaging," Appl. Opt. 42, 3117-3128 (2003). [CrossRef] [PubMed]
  8. A. Robichaux-Viehoever, E. Kanter, H. Shappell, D. Billheimer, H. JonesIII, and A. Mahadevan-Jansen, "Characterization of Raman spectra measured in vivo for the detection of cervical dysplasia," Appl. Spectrosc. 61, 986-993 (2007). [CrossRef] [PubMed]
  9. P. Matousek and N. Stone, "Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy," J. Biomed. Opt. 12, 024008: 024001-024008 (2007). [CrossRef]
  10. J. L. Lambert, C. C. Pelletier, and M. Borchert, "Glucose determination in human aqueous humor with Raman spectroscopy," J. Biomed. Opt. 10, 031110: 031111-031118 (2005). [CrossRef]
  11. A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, "Raman spectroscopy for noninvasive glucose measurements," J. Biomed. Opt. 10, 031114: 031111-031119 (2005). [CrossRef]
  12. B. C. Wilson, "Detection and treatment of dysplasia in Barrett's esophagus: a pivotal challenge in translating biophotonics from bench to bedside," J. Biomed. Opt. 12, 051401:051401 - 051422 (2007). [CrossRef] [PubMed]
  13. E. R. C. Draper, M. D. Morris, N. P. Camacho, P. Matousek, M. Towrie, A. W. Parker, and A. E. Goodship, "Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy," J. Bone. Miner. Res. 20, 1968-1972 (2005). [CrossRef] [PubMed]
  14. A. J. Bailey, S. F. Wotton, T. J. Sims, and P. W. Thompson, "Post-translational modifications in the collagen of human osteoporotic femoral head," Biochem. Biophys. Res. Commun. 185, 801-805 (1992). [CrossRef] [PubMed]
  15. B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni, "Enhancement of axial resolution in fluorescence microscopy by standing wave excitation,"  366, 44-48 (1993).
  16. L. Knott and A. J. Bailey, "Collagen cross-links in mineralizing tissues: A review of their chemistry, function, and clinical relevance," Bone 22, 181-187 (1998). [CrossRef] [PubMed]
  17. E. P. Paschalis, E. Shane, G. Lyritis, G. Skarantavos, R. Mendelsohn, and A. L. Boskey, "Bone fragility and collagen cross-links," J. Bone. Miner. Res. 19, 2000-2004 (2004). [CrossRef] [PubMed]
  18. M. V. Schulmerich, K. A. Dooley, T. M. Vanasse, S. A. Goldstein, and M. D. Morris, "Subsurface and transcutaneous Raman spectroscopy and mapping using concentric illumination rings and collection with a circular fiber-optic array.," Appl. Spectrosc. 61, 671-678 (2007). [CrossRef] [PubMed]
  19. B. R. McCreadie, M. D. Morris, T.-c. Chen, D. Sudhaker Rao, W. F. Finney, E. Widjaja, and S. A. Goldstein, "Bone tissue compositional differences in women with and without osteoporotic fracture," Bone 39, 1190-1195 (2006). [CrossRef] [PubMed]
  20. J. C. Carter, S. M. Angel, M. Lawrence-Snyder, J. Scaffidi, R. E. Whipple, and J. G. Reynolds, "Standoff detection of high explosive magterials at 50 meters in ambientl light conditions using a small Raman instrument," Appl. Spectrosc. 59, 769-775 (2005). [CrossRef] [PubMed]
  21. W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, "Snapshot hyperspectral imaging in ophthalmology," J. Biomed. Opt. 12, 014036-014037 (2007). [CrossRef] [PubMed]
  22. S. P. Poplack, T. D. Tosteson, W. A. Wells, B. W. Pogue, P. M. Meaney, A. Hartov, C. A. Kogel, S. K. Soho, J. J. Gibson, and K. D. Paulsen, "Electromagnetic breast imaging: results of a pilot study in women with abnormal mammograms," Radiology 243, 350-359 (2007). [CrossRef] [PubMed]
  23. M. V. Schulmerich, S. Srinivasan, J. H. Cole, J. Kreider, K. A. Dooley, S. A. Goldstein, B. W. Pogue, and M. D. Morris, "Non-invasive Raman tomographic imaging of canine cortical bone tissue," JBO Lett. 13, 020506: 020501-020503 (2007).
  24. M. V. Schulmerich, K. A. Dooley, T. M. Vanasse, S. A. Goldstein, and M. D. Morris, "Subsurface and Transcutaneous Raman Spectroscopy and Mapping Using Concentric Illumination Rings and Collection with a Circular Fiber-Optic Array," Appl. Spectrosc. 61, 671-678 (2007). [CrossRef] [PubMed]
  25. M. V. Schulmerich, M. D. Morris, T. M. Vanasse, and S. A. Goldstein, "Transcutaneous Raman spectroscopy of bone global sampling and ring/disk fiber optic probes," in Advanced Biomedical and Clinical Diagnostic Systems V, (SPIE, 2007), 643009-643008.
  26. M. V. Schulmerich, W. F. Finney, R. A. Fredericks, and M. D. Morris, "Subsurface Raman Spectroscopy and Mapping Using a Globally Illuminated Non-Confocal Fiber-Optic Array Probe in the Presence of Raman Photon Migration," Appl. Spectrosc. 60, 109-114 (2006). [CrossRef] [PubMed]
  27. M. V. Schulmerich, S. Srinivasan, J. Kreider, J. H. Cole, K. A. Dooley, S. A. Goldstein, B. W. Pogue, and M. D. Morris, "Raman tomography of tissue phantoms and bone tissue," in Biomedical optical spectroscopy, (SPIE, 2008),
  28. F. J. Harris, "On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform," Proc. IEEE 66, 51-83 (1978). [CrossRef]
  29. C. A. Lieber and A. Mahadevan-Jansen, "Automated method for subtraction of fluorescence from biological Raman spectra," Appl. Spectrosc. 57, 1363-1367 (2003). [CrossRef] [PubMed]
  30. A. Carden and M. D. Morris, "Application of vibrational spectroscopy to the study of mineralized tissues (review)," J. Biomed. Opt. 5, 259-268 (2000). [CrossRef] [PubMed]
  31. D. H. Kohn, N. D. Sahar, S. I. Hong, K. Golcuk, and M. D. Morris, "Local Mineral and Matrix Changes Associated with Bone Adaptation and Microdamage," Mater. Res. Soc. Symp. Proc. 898E, 1-11 (2006).
  32. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. SevickMuraca, "Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media," Appl. Opt. 36, 2260-2272 (1997). [CrossRef] [PubMed]
  33. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005). [CrossRef] [PubMed]
  34. J. Schöberl, "NETGEN - An advancing front 2D/3D-mesh generator based on abstract rules."
  35. S. Srinivasan, M. V. Schulmerich, B. W. Pogue, and M. D. Morris, "3-D image-guided raman characterization in a phantom study," in Biomedical Optics, (Optical Society of America, 2008), BWD5.
  36. J. Q. Zhang, J. M. SullivanJr., H. Ghadyani, and D. M. Meyer, "MRI guided 3D mesh generation and registration for biological modeling," Journal of computing and information science in engineering 5, 283-290 (2005). [CrossRef]
  37. M. D. Morris, A. Berger, and A. Mahadevan-Jansen, "Infrared and Raman spectroscopy," J. Biomed. Opt. 10, 031101 (2005). [CrossRef] [PubMed]
  38. Z. Movasaghi, S. Rehman, and I. U. Rehman, "Raman spectroscopy of biological tissues," Appl. Spectrosc. 42, 493-541 (2007). [CrossRef]
  39. D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, "Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth," Appl. Opt. 40, 1669-1678 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited