OSA's Digital Library

Optics Express

Optics Express

  • Vol. 16, Iss. 16 — Aug. 4, 2008
  • pp: 12214–12219

Time-resolved thermal mirror technique with top-hat cw laser excitation

Francine B. G. Astrath, Nelson G. C. Astrath, Jun Shen, Jianqin Zhou, Luis C. Malacarne, P. R. B. Pedreira, and Mauro L. Baesso  »View Author Affiliations

Optics Express, Vol. 16, Issue 16, pp. 12214-12219 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (205 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theoretical model was developed for time-resolved thermal mirror spectroscopy under top-hat cw laser excitation that induced a nanoscale surface displacement of a low absorption sample. An additional phase shift to the electrical field of a TEM00 probe beam reflected from the surface displacement was derived, and Fresnel diffraction theory was used to calculate the propagation of the probe beam. With the theory, optical and thermal properties of three glasses were measured, and found to be consistent with literature values. With a top-hat excitation, an experimental apparatus was developed for either a single thermal mirror or a single thermal lens measurement. Furthermore, the apparatus was used for concurrent measurements of thermal mirror and thermal lens. More physical properties could be measured using the concurrent measurements.

© 2008 Optical Society of America

OCIS Codes
(160.6840) Materials : Thermo-optical materials
(300.6430) Spectroscopy : Spectroscopy, photothermal

ToC Category:

Original Manuscript: July 24, 2008
Revised Manuscript: July 28, 2008
Manuscript Accepted: July 28, 2008
Published: July 30, 2008

Francine B. Astrath, Nelson G. Astrath, Jun Shen, Jianqin Zhou, Luis C. Malacarne, P. R. B. Pedreira, and Mauro L. Baesso, "Time-resolved thermal mirror technique with top-hat cw laser excitation," Opt. Express 16, 12214-12219 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, and A. C. Boccara, "Photothermal displacement spectroscopy - an optical probe for solids and surfaces," Appl. Phys. A 32, 141-154 (1983). [CrossRef]
  2. D. P. Almond and P. M. Patel, Photothermal Science and Techniques (Chapman and Hall, London, 1996).
  3. R. D. Snook and R. D. Lowe, "Thermal lens spectrometry. A review," Analyst 120, 2051-2068 (1995) [CrossRef]
  4. S. E. Bialkowski, "Photothermal Spectroscopy Methods for Chemical Analysis" (Wiley, New York, 1996).
  5. M. L. Baesso, J. Shen, and R. D. Snook, "Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths," J. Appl. Phys.  75, 3732-3737 (1994). [CrossRef]
  6. Y. S. Lu, P. K. Kuo, L. D. Favro, R. L. Thomas, Z. L. Wu, and S. T. Gu, "Diffraction patterns of a surface thermal lens," Progr. Natural Sci. 6, S202-S205 (1996).
  7. B. C. Li, "3-Dimensional theory of pulsed photothermal deformation," J. Appl. Phys. 68, 482-487 (1990). [CrossRef]
  8. N. G. C. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, "Time-resolved thermal mirror for the measurements of thermo-optical-mechanical properties of low absorbing solids," Appl. Phys. Lett. 91, 191908/1-191908/3 (2007).
  9. L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, "Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror," Appl. Phys. Lett. 92, 131903/1 - 131903/3 (2008). [CrossRef]
  10. B. C. Li, S. Xiong and Y. Zhang, "Fresnel diffraction model for mode-mismatched thermal lens with top-hat beam excitation," Appl. Phys. B 80, 527-534 (2005). [CrossRef]
  11. N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, P. R. B. Pedreira, L. C. Malacarne, A. C. Bento, and M. L. Baesso "Top-hat cw-laser-induced time-resolved mode-mismatched thermal lens spectroscopy for quantitative analysis of low absorption materials," Opt. Lett. 33, 1464-1466 (2008). [CrossRef] [PubMed]
  12. H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids (Clarendon Press, Oxford, 1959).
  13. W. Nowacki, Thermoelasticity (Pergamon, Oxford, 1982).
  14. F. Sato, L. C. Malacarne, P. R. B. Pedreira, M. P. Belancon, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, "Time-resolved thermal mirror method: A theoretical study," J. Appl. Phys.(Accepted2008). [CrossRef]
  15. E. Pelicon, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, D. F. de Souza, S. L. Oliveira, J. A. Sampaio, S. M. Lima, L. A. O. Nunes, T. Catunda, "Temperature dependence of fluorescence quantum efficiency of optical glasses determined by thermal lens spectrometry," J. Non-Cryst. Solids,  304, 244-250 (2002). [CrossRef]
  16. S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, "Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry," Phys. Rev. B 60, 15173-15178 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited