OSA's Digital Library

Optics Express

Optics Express

  • Vol. 16, Iss. 16 — Aug. 4, 2008
  • pp: 12302–12312

Gold nanoparticle tips for optical field confinement in infrared scattering near-field optical microscopy

Marc Tobias Wenzel, Thomas Härtling, Phillip Olk, Susanne C. Kehr, Stefan Grafstræm, Stephan Winnerl, Manfred Helm, and Lukas M. Eng  »View Author Affiliations

Optics Express, Vol. 16, Issue 16, pp. 12302-12312 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (502 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the implementation of metal nanoparticles as probes for scattering and apertureless near-field optical investigations in the mid-infrared (mid-IR) spectral regime. At these wavelengths, an efficient electric-field confinement is necessary and achieved here through a gold metal nanoparticle of 80 nm in diameter (Au80-MNP) acting as the optical antenna. The Au80-MNP is attached to a standard AFM cantilever used as the spatial manipulator. When approached to a sample surface while being illuminated with an infrared beam, the Au80-MNP produces a considerably improved spatial confinement of the electric field compared to an ordinary scattering AFM tip. We demonstrate here the confinement normal to the sample surface by making use of a sample-induced phonon polariton resonance in a ferroelectric lithium niobate sample. Our experimental findings are in very good agreement with the quasistatic dipole model and show improved optical resolution via well-selected antenna particles.

© 2008 Optical Society of America

OCIS Codes
(110.3080) Imaging systems : Infrared imaging
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(180.5810) Microscopy : Scanning microscopy
(300.6340) Spectroscopy : Spectroscopy, infrared
(180.4243) Microscopy : Near-field microscopy

ToC Category:

Original Manuscript: April 16, 2008
Revised Manuscript: June 26, 2008
Manuscript Accepted: June 27, 2008
Published: August 1, 2008

Virtual Issues
Vol. 3, Iss. 9 Virtual Journal for Biomedical Optics

Marc Tobias Wenzel, Thomas Härtling, Phillip Olk, Susanne C. Kehr, Stefan Grafström, Stephan Winnerl, Manfred Helm, and Lukas M. Eng, "Gold nanoparticle tips for optical field confinement in infrared scattering near-field optical microscopy," Opt. Express 16, 12302-12312 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. H. Synge, "A Suggested Method for extending Microscopic Resolution into the Ultra-Microscopic Region," Philos. Mag. 6, 356-362 (1928).
  2. E. A. Ash and G. Nicholls, "Super-resolution Aperture Scanning Microscope," Nature 237, 510-512 (1972). [CrossRef] [PubMed]
  3. D. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution λ/20," Appl. Phys. Lett. 44, 651-653 (1984). [CrossRef]
  4. B. Knoll and F. Keilmann, "Electromagnetic fields in the cutoff regime of tapered metallic waveguides," Opt. Commun. 162, 177-181 (1999). [CrossRef]
  5. L. Novotny, D. W. Pohl, and B. Hecht, "Scanning near-field optical probe with ultrasmall spot size," Opt. Lett. 20, 970-972 (1995). [CrossRef] [PubMed]
  6. R. M. Stöckle, N. Schaller, V. Deckert, C. Fokas, and R. Zenobi, "Brighter near-field optical probes by means of improving the optical destruction threshold," J. Microsc. 194, 378-382 (1999). [CrossRef]
  7. Y. D. Suh and R. Zenobi, "Improved Probes for Scanning Near-field Optical Microscopy," Adv. Mater. 12, 1139-1142 (2000). [CrossRef]
  8. F. Keilmann, "Vibrational-infrared near-field microscopy," Vib. Spectrosc. 29, 109-114 (2002). [CrossRef]
  9. R. Bachelot, P. Gleyzes, and A. C. Boccara, "Near-field optical microscope based on local perturbation of a diffraction spot," Opt. Lett. 20, 1924-1926 (1995). [CrossRef] [PubMed]
  10. R. Hillenbrand and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett. 85, 3029-3032 (2000). [CrossRef] [PubMed]
  11. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202, 72-76 (2001). [CrossRef] [PubMed]
  12. F. Zenhausern, Y. Martin, and H. Wickramasinghe, "Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution," Science 269, 1083-1085 (1995). [CrossRef] [PubMed]
  13. S. W. Hell and J. Wichmann, "Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy," Opt. Lett. 19, 780-782 (1994). [CrossRef] [PubMed]
  14. M. Dyba and S. W. Hell, "Focal Spots of Size λ/23 Open Up Far-Field Florescence Microscopy at 33 nm Axial Resolution," Phys. Rev. Lett.  88, 163901-1 (2002). [CrossRef] [PubMed]
  15. Z. H. Kim and S. R. Leone, "High Resolution Apertureless Near-Field Optical Imaging Using Gold Nanosphere Probes," J. Phys. Chem. B 110, 19804-19809 (2006). [CrossRef] [PubMed]
  16. R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon enhanced light-matter interaction at the nanometer scale," Nature 418, 159-162 (2002). [CrossRef] [PubMed]
  17. S. Schneider, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, "Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy," Appl. Phys. Lett. 90, 143101-143103 (2007). [CrossRef]
  18. J. Renger, S. Grafström, L. M. Eng, and R. Hillenbrand, "Resonant light scattering by near-field-induced phonon polaritons," Phys. Rev. B 71, 75410-1 (2005). [CrossRef]
  19. B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182, 321-328 (2000). [CrossRef]
  20. M. T. Wenzel, P. Olk, T. Härtling, and L. M. Eng, "Fabrication of highly reproducible and well characterized scattering scanning near-field (s-SNOM) probes based on colloidal gold nanoparticles," manuscript in preparation (2008).
  21. T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, "Frequency modulation detection using high-Q-cantilevers for enhanced force microscope sensitivity," J. Appl. Phys. 69, 668-673 (1991). [CrossRef]
  22. L. Billot, M. Lamy de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, "Error signal artifact in apertureless scanning near-field optical microscopy," Appl. Phys. Lett. 89, 023105-1 (2006). [CrossRef]
  23. A. S. Barker and R. Loudon, "Dielectric Properties and Optical Phonons in LiNbO3," Phys. Rev. 158, 433-445 (1967) [CrossRef]
  24. D. Lide, CRC Handbook of Chemistry and Physics 73th Edition (CRC Press Inc., Boca Rato, FL, USA, 1992) pp. 12-137.
  25. I. Lindell, K. Nikoskinen, and A. Viljanen, "Electrostatic image method for the anisotropic half space," IEE Proc. Sci. Meas. Technol. 144, 156-162 (1997). [CrossRef]
  26. S. C. Schneider, S. Grafström, and L. M. Eng, "Scattering near-field optical microscopy of optically anisotropic systems," Phys. Rev. B 71, 115418-115422 (2005). [CrossRef]
  27. P. Olk, J. Renger, T. Härtling, M. T. Wenzel, and L. M. Eng, "Two Particle Enhanced Nano Raman Microscopy and Spectroscopy," Nano Lett. 7, 1736-1740 (2007). [CrossRef] [PubMed]
  28. P. Olk, J. Renger, M. T. Wenzel, and L. M. Eng, "Distance Dependent Spectral Tuning of Two Coupled Metal Nanoparticles," Nano Lett. 8, 1174-1178 (2008). [CrossRef] [PubMed]
  29. T. Härtling, P. Reichenbach, and L. M. Eng, "Near-field coupling of a single fluorescent molecule and a spherical gold nanoparticle," Opt. Express 15, 12806-12817 (2007). [CrossRef] [PubMed]
  30. S. C. Schneider, "Scattering Scanning Near-Field Optical Microscopy on Anisotropic Dielectrics," PhD thesis, Technische Universität Dresden, Germany (2007).
  31. S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D.  Stehr, and M.  Helm, "Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser," Phys. Rev. Lett.  100, 256403-1 (2008) [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited