OSA's Digital Library

Optics Express

Optics Express

  • Vol. 16, Iss. 16 — Aug. 4, 2008
  • pp: 12387–12396

Continuous-wave two-photon absorption in a Watt-class semiconductor optical amplifier

Paul W. Juodawlkis, Jason J. Plant, Joseph P. Donnelly, Ali Motamedi, and Erich P. Ippen  »View Author Affiliations


Optics Express, Vol. 16, Issue 16, pp. 12387-12396 (2008)
http://dx.doi.org/10.1364/OE.16.012387


View Full Text Article

Enhanced HTML    Acrobat PDF (831 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the observation of photoluminescence produced by the recombination of free carriers generated via continuous-wave (CW) two-photon absorption (TPA) in a packaged, low-confinement (Γ~0.5%) InGaAsP/InP quantum-well slab-coupled optical waveguide amplifier (SCOWA) having a saturation output power of 0.8 W and 1/e-mode-field diameters of 5×7 μm. Photoluminescence power measured at the wavelength corresponding to the bandgap wavelength of the SCOWA’s InGaAsP waveguide (λG~1040 nm) exhibits a quadratic dependence on the amplifier’s 1540-nm output power. Comparison between measured and simulated CW gain saturation data reveals that the combination of TPA and TPA-generated free-carrier absorption (FCA) limits the CW output intensity of high-power, low-confinement semiconductor optical amplifiers and semiconductor lasers.

© 2008 Optical Society of America

OCIS Codes
(130.5990) Integrated optics : Semiconductors
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(230.7370) Optical devices : Waveguides
(230.4480) Optical devices : Optical amplifiers

ToC Category:
Optical Devices

History
Original Manuscript: May 20, 2008
Revised Manuscript: July 6, 2008
Manuscript Accepted: July 7, 2008
Published: August 1, 2008

Citation
Paul W. Juodawlkis, Jason J. Plant, Joseph P. Donnelly, Ali Motamedi, and Erich P. Ippen, "Continuous-wave two-photon absorption in a Watt-class semiconductor optical amplifier," Opt. Express 16, 12387-12396 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-12387


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Azema, J. Botineau, F. Gires, and A. Saissy, "Guided-wave measurement of the 1.06 μm two-photon absorption coefficient in GaAs epitaxial layers," J. Appl. Phys 49, 24 (1978). [CrossRef]
  2. H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, "Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum-well waveguides," J. Appl. Phys 70, 3992 (1991). [CrossRef]
  3. E. R. Thoen, J. P. Donnelly, S. H. Groves, K. L. Hall, and E. P. Ippen, "Proton bombardment for enhanced four-wave mixing in InGaAsP-InP waveguides," IEEE Photon. Technol. Lett. 12, 311 (2000). [CrossRef]
  4. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in Silicon waveguides," Opt. Express 12, 2774 (2004). [CrossRef] [PubMed]
  5. J. E. Bowers, T. L. Koch, B. R. Hemenway, D. P. Wilt, T. P. Bridges, and E. G. Burkhardt, "High-frequency modulation of 1.52 μm vapour-phase-transported InGaAsP lasers," Electron. Lett. 21, 392 (1985). [CrossRef]
  6. J. Huang and L. W. Casperson, "Gain and saturation in semiconductor lasers," Opt. Quantum Electron. 26, 369 (1993). [CrossRef]
  7. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, New York, 1993).
  8. F. Koyama, K.-Y. Liou, A. G. Dentai, T. Tanbun-ek, and C. A. Burrus, "Multiple-quantum-well GaInAs/GaInAsP tapered broad-area amplifiers with monolithically integrated waveguide lens for high-power applications," IEEE Photon. Technol. Lett. 5, 916 (1993). [CrossRef]
  9. J. P. Donnelly, J. N. Walpole, G. E. Betts, S. H. Groves, J. D. Woodhouse, F. J. O'Donnell, L. J. Missaggia, R. J. Bailey, and A. Napoleone, "High-power 1.3-μm InGaAsP-InP amplifiers with tapered gain regions," IEEE Photon. Technol. Lett. 8, 1450 (1996). [CrossRef]
  10. P. W. Juodawlkis, J. J. Plant, L. J. Missaggia, K. E. Jensen, and F. J. O'Donnell, "Advances in 1.5-µm InGaAsP/InP slab-coupled optical waveguide amplifiers (SCOWAs)," in Proc. of the IEEE LEOS Annual Meeting, 2007.
  11. K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, "A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure," IEEE Photon. Technol. Lett. 17, 974 (2005). [CrossRef]
  12. T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, "An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots," IEEE Photon. Technol. Lett. 17, 1614 (2005). [CrossRef]
  13. T. W. Berg and J. Mork, "Saturation and noise properties of quantum-dot optical amplifiers," IEEE J. Quantum Electron. 40, 1527 (2004). [CrossRef]
  14. J. J. Plant, P. W. Juodawlkis, R. K. Huang, J. P. Donnelly, L. J. Missaggia, and K. G. Ray, "1.5-μm InGaAsP-InP slab-coupled optical waveguide lasers," IEEE Photon. Technol. Lett. 17, 735 (2005). [CrossRef]
  15. A. Motamedi, E. P. Ippen, J. J. Plant, and P. W. Juodawlkis, "Ultrafast nonlinearities and gain dynamics in high-power semiconductor amplifiers and lasers," to be published.
  16. Y. W. Tseng, F. R. Ahmad, M. A. Kats, and F. Rana, "Energy limits imposed by two-photon absorption for pulse amplication in high power semiconductor optical ampliers," to be published.
  17. J. J. Plant, J. T. Gopinath, B. Chann, D. J. Ripin, R. K. Huang, and P. W. Juodawlkis, "250-mW, 1.5-μm monolithic passively mode-locked slab-coupled optical waveguide laser," Opt. Lett. 31, 223 (2006). [CrossRef] [PubMed]
  18. P. W. Juodawlkis, J. J. Plant, R. K. Huang, L. J. Missaggia, and J. P. Donnelly, "High-power 1.5-µm InGaAsP/InP slab-coupled optical waveguide amplifier," IEEE Photon. Technol. Lett. 17, 279 (2005). [CrossRef]
  19. H. Temkin, V. G. Keramidas, M. A. Pollack, and W. R. Wagner, "Temperature dependence of photoluminescence of n-InGaAsP.," J. Appl. Phys 52, 1574 (1981). [CrossRef]
  20. D. Botteldooren and R. Baets, "Influence of band-gap shrinkage on the carrier-induced refractive index change in InGaAsP," Appl. Phys. Lett. 54, 1989 (1989). [CrossRef]
  21. P. W. Juodawlkis and J. J. Plant, "Gain-power trade-off in low-confinement semiconductor optical amplifiers," in Proceedings of the International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), 2007.
  22. M. J. Connelly, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum Electron. 37, 439 (2001). [CrossRef]
  23. E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, "Energy band-gap dependence of two-photon absorption," Opt. Lett. 10, 490 (1985). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited