OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 12469–12477

Plasmonic band gap structures for surface-enhanced Raman scattering

Askin Kocabas, Gulay Ertas, S. Seckin Senlik, and Atilla Aydinli  »View Author Affiliations

Optics Express, Vol. 16, Issue 17, pp. 12469-12477 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2450 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Surface-enhanced Raman Scattering (SERS) of rhodamine 6G (R6G) adsorbed on biharmonic metallic grating structures was studied. Biharmonic metallic gratings include two different grating components, one acting as a coupler to excite surface plasmon polaritons (SPP), and the other forming a plasmonic band gap for the propagating SPPs. In the vicinity of the band edges, localized surface plasmons are formed. These localized plasmons strongly enhance the scattering efficiency of the Raman signal emitted on the metallic grating surfaces. It was shown that reproducible Raman scattering enhancement factors of over 105 can be achieved by fabricating biharmonic SERS templates using soft nano-imprint technique. We have shown that the SERS activities from these templates are tunable as a function of plasmonic resonance conditions. Similar enhancement factors were also measured for directional emission of photoluminescence. At the wavelengths of the plasmonic absorption peak, directional enhancement by a factor of 30 was deduced for photoluminescence measurements.

© 2008 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(300.6450) Spectroscopy : Spectroscopy, Raman
(350.2770) Other areas of optics : Gratings

ToC Category:
Optics at Surfaces

Original Manuscript: May 15, 2008
Revised Manuscript: July 5, 2008
Manuscript Accepted: July 6, 2008
Published: August 4, 2008

Virtual Issues
Vol. 3, Iss. 10 Virtual Journal for Biomedical Optics

Askin Kocabas, Gulay Ertas, S. S. Senlik, and Atilla Aydinli, "Plasmonic band gap structures for surface-enhanced Raman scattering," Opt. Express 16, 12469-12477 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. C. Schatz, M. A. Young, and R. P. Van Duyne, "Electromagnetic mechanism of SERS," in Surface-Enhanced Raman Scattering: Physics and Applications (2006), pp. 19-45.
  2. E. J. Bjerneld, F. Svedberg, P. Johansson, and M. Kall, "Direct observation of heterogeneous photochemistry on aggregated Ag nanocrystals using Raman spectroscopy: The case of photoinduced degradation of aromatic amino acids," J. Phys. Chem. A 108, 4187-4193 (2004). [CrossRef]
  3. K. A. Bosnick, J. Jiang, and L. E. Brus, "Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates," J. Phys. Chem. B 106, 8096-8099 (2002). [CrossRef]
  4. A. Campion and P. Kambhampati, "Surface-enhanced Raman scattering," Chem. Soc. Rev 27, 241-250 (1998). [CrossRef]
  5. W. E. Doering and S. M. Nie, "Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement," J. Phys. Chem. B 106, 311-317 (2002). [CrossRef]
  6. M. Kall, H. X. Xu, and P. Johansson, "Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy," J. Raman Spectrosc. 36, 510-514 (2005). [CrossRef]
  7. A. M. Michaels, M. Nirmal, and L. E. Brus, "Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals," J. Am. Chem. Soc. 121, 9932-9939 (1999). [CrossRef]
  8. M. Moskovits, "Surface-Enhanced Spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985). [CrossRef]
  9. M. Kerker, "Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids," Acc. Chem. Res. 17, 271-277 (1984). [CrossRef]
  10. M. Kerker, O. Siiman, L. A. Bumm, and D. S. Wang, "Surface enhanced Raman scattering (SERS) of citrate ion adsorbed on colloidal silver," Appl. Opt. 19, 3253 (1980). [CrossRef] [PubMed]
  11. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997). [CrossRef]
  12. A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, "Wavelength-scanned surfaceenhanced Raman excitation spectroscopy," J. Phys. Chem. B 109, 11279-11285 (2005). [CrossRef]
  13. F. J. GarciaVidal and J. B. Pendry, "Collective theory for surface enhanced Raman scattering," Phys. Rev. Lett. 77, 1163-1166 (1996). [CrossRef]
  14. S. M. Nie and S. R. Emery, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997). [CrossRef] [PubMed]
  15. H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, "Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps," Adv. Mater. 18, 491 (2006). [CrossRef]
  16. K. Kneipp, G. R. Harrison, S. R. Emory, and S. M. Nie, "Single-molecule Raman spectroscopy - Fact or fiction?," Chimia 53, 35-37 (1999).
  17. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive chemical analysis by Raman spectroscopy," Chem. Rev. 99, 2957 (1999). [CrossRef]
  18. J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, "Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals," Nano Lett. 5, 2262-2267 (2005). [CrossRef] [PubMed]
  19. N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, "Tuning localized plasmons in nanostructured substrates for surface- enhanced Raman scattering," Opt. Express 14, 847-857 (2006). [CrossRef] [PubMed]
  20. N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, "Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering," Phys. Rev. B 76, 035426 (2007). [CrossRef]
  21. I. Baltog, N. Primeau, R. Reinisch, and J. L. Coutaz, "Surface-Enhanced Raman-Scattering on Silver Grating - Optimized Antennalike Gain of the Stokes Signal of 10(4)," Appl. Phys. Lett. 66, 1187-1189 (1995). [CrossRef]
  22. M. Kahl, and E. Voges, "Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures," Phys. Rev. B 61, 14078-14088 (2000). [CrossRef]
  23. W. Knoll, M. R. Philpott, J. D. Swalen, and A. Girlando, "Surface-Plasmon Enhanced Raman-Spectra of Monolayer Assemblies," J. Chem. Phys. 77, 2254-2259 (1982). [CrossRef]
  24. A. Nemetz, U. Fernandez, and W. Knoll, "Surface-Plasmon Field-Enhanced Raman-Spectroscopy with Double Gratings," J. Appl. Phys. 75, 1582-1585 (1994). [CrossRef]
  25. A. C. R. Pipino, R. P. VanDuyne, and G. C. Schatz, "Surface-enhanced second-harmonic diffraction: Experimental investigation of selective enhancement," Phys. Rev. B 53, 4162-4169 (1996). [CrossRef]
  26. A. Kocabas, S. S. Senlik, and A. Aydinli, "Plasmonic band gap cavities on biharmonic Gratings," Phys. Rev. B 77, 195130 (2008). [CrossRef]
  27. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996). [CrossRef]
  28. P. Hildebrandt and M. Stockburger, "Surface-Enhanced resonance Raman-Spectroscopy of Rhodamine-6G adsorbed on colloidal silver," J. Phys. Chem. 88, 5935-5944 (1984). [CrossRef]
  29. Y. Chen, K. Munechika, and D. S. Ginger, "Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles," Nano Lett. 7, 690-696 (2007). [CrossRef] [PubMed]
  30. N. F. Chiu, C. Yu, S. Y. Nien, J. H. Lee, C. H. Kuan, K. C. Wu, C. K. Lee, and C. W. Lin, "Enhancement and tunability of active plasmonic by multilayer grating coupled emission," Opt. Express 15, 11608-11615 (2007). [CrossRef] [PubMed]
  31. E. Takeda, M. Fujii, T. Nakamura, Y. Mochizuki, and S. Hayashi, "Enhancement of photoluminescence from excitons in silicon nanocrystals via coupling to surface plasmon polaritons," J. Appl. Phys. 102, 023506 (2007). [CrossRef]
  32. J. Y. Wang, Y. W. Kiang, and C. C. Yang, "Emission enhancement behaviors in the coupling between surface plasmon polariton on a one-dimensional metallic grating and a light emitter," Appl. Phys. Lett. 91, 233104 (2007). [CrossRef]
  33. Y. Wang and Z. P. Zhou, "Strong enhancement of erbium ion emission by a metallic double grating," Appl. Phys. Lett. 89, 253122 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited