OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 12487–12504

Interaction of nanoparticles with substrates: effects on the dipolar behaviour of the particles

F. Moreno, B. García-Cámara, J. M. Saiz, and F. González  »View Author Affiliations

Optics Express, Vol. 16, Issue 17, pp. 12487-12504 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2225 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, we present a numerical analysis of the surface electric field of a metallic nanoparticle (either 2D or 3D) interacting with a flat substrate underneath. The influence of the distance to the substrate, particle size, the surrounding media and the substrate optical properties is analyzed as a function of the incident wavelength. We show that these are crucial factors that change the field distribution associated to the dipolar behavior of the particle. A useful parameter for illustrating the changes in the angular distribution is θmax , the angle at which the maximum of the surface electric field is located.

© 2008 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.5850) Scattering : Scattering, particles
(160.4236) Materials : Nanomaterials

ToC Category:
Optics at Surfaces

Original Manuscript: June 3, 2008
Revised Manuscript: June 27, 2008
Manuscript Accepted: June 28, 2008
Published: August 4, 2008

F. Moreno, B. García-Cámara, J. M. Saiz, and F. González, "Interaction of nanoparticles with substrates: effects on the dipolar behaviour of the particles," Opt. Express 16, 12487-12504 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Kreuzer, R. Quidant, J. P. Salvador, M. P. Marco, and G. Badenes, "Colloidal-based localized surface plasmon biosensor for the quantitative determination of stanozolol," Anal. Bioanal. Chem. DOI 10.1007/s00216-008-2022-z. [PubMed]
  2. A. Agrawal, R. Deo, G.D. Wang, M. D. Wang, and S. Nie, "Nanometer-scale mapping and single-molecule detection with color-coded nanoparticle probes," PNAS 105, 3298-3303 (2008). [CrossRef] [PubMed]
  3. Y. C. Cao, R. Jin, and C. A. Mirkin," Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection," Science 297, 1536-1540 (2002). [CrossRef] [PubMed]
  4. R. Jensen, J. Shermand, and S. Emory, "Single Nanoparticle Based Optical pH Probe," Appl. Spectrosc. 61, 832-838 (2007). [CrossRef] [PubMed]
  5. N. Engheta, "Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials," Science 317, 1698-1702 (2007). [CrossRef] [PubMed]
  6. T. Kalkbrenner, U. Håkanson, and V. Sandoghdar, "Tomographic Plasmon Spectroscopy of a Single Gold Nanoparticle," Nanolett. 4, 2309-2314 (2004). [CrossRef]
  7. K. G. Lee, H. W Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and S. Kim, "Vector field microscopic imaging of light," Nature Phot. 1, 53-56 (2007). [CrossRef]
  8. F. Moreno, F. González, and J. M. Saiz, "Plasmon spectroscopy of metallic nanoparticles above flat dielectric substrates," Opt. Lett. 31, 1902-1904 (2006). [CrossRef] [PubMed]
  9. J. Nelayah, M. Kociak, O. Stéphan, F. García de Abajo, M. Tencé. L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, "Mapping surface plasmons on a single metallica nanoparticle," Nature Phys. 3, 348-353 (2007). [CrossRef]
  10. J. R. Arias-González and M. Nieto-Vesperinas, "Radiation pressure over dielectric and metallica nanocylinders on surfaces: polarization dependence and plasmon resonant condition," Opt. Lett. 27, 2149-2151 (2002). [CrossRef]
  11. J. L. de la Peña, F. González, J. M. Saiz, F. Moreno, and P. J. Valle, "Sizing particles on substrates. A general method for oblique incidence," J.Appl. Phys. 85,432 (1999). [CrossRef]
  12. J. L. de la Peña, J. M. Saiz, G. Videen, F. González, P. J. Valle, and F. Moreno, "Scattering from particles on substrates: visibility factor and polydispersity," Opt. Lett. 24,1451-1453 (1999). [CrossRef]
  13. G. Lévêque and O. J. F. Martin, "Optical interactions in a plasmonic particle couple to a metallic film," Opt. Express 14, 9971-9981 (2006). [CrossRef] [PubMed]
  14. P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990). [CrossRef]
  15. P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  16. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  17. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  18. L. Sherry, S.-H. Chang, G. Schatz, and R. Van Duyne,"Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes," Nanolett. 5, 2034-2038 (2005). [CrossRef]
  19. X. Wei, X. Luo, X. Dong, and C. Du, "Localized surface Plasmon Nanolithography with Ultrahigh Resolution," Opt. Express 15, 14177-14183 (2007). [CrossRef] [PubMed]
  20. T. Kalr, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, "Surface-Plasmon Resonances in Single Metallic Nanoparticles," Phys. Rev. Lett. 80, 4249-4252 (1998). [CrossRef]
  21. H. Mertens, J. Verhoeven, A. Polman, and F. D. Tichelaar, "Infrared surface plasmons in two-dimensional silver nanoparticles arrays in silicon,"Appl. Phys. Lett. 85, 1317 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited