OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 12523–12537

Purcell effect in nonlinear photonic structures: A coupled mode theory analysis

Rafif E. Hamam, Mihai Ibanescu, Evan J. Reed, Peter Bermel, Steven G. Johnson, Erich Ippen, J. D. Joannopoulos, and Marin Soljačić  »View Author Affiliations

Optics Express, Vol. 16, Issue 17, pp. 12523-12537 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (411 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a coupled mode theory (CMT) model of the behavior of a polarization source in a general photonic structure, and obtain an analytical expression for the resulting generated electric field; loss, gain and/or nonlinearities can also be modeled. Based on this treatment, we investigate the criteria needed to achieve an enhancement in various nonlinear effects, and to produce efficient sources of terahertz radiation, in particular. Our results agree well with exact finite-difference time-domain (FDTD) results. Therefore, this approach can also in certain circumstances be used as a potential substitute for the more numerically intensive FDTD method.

© 2008 Optical Society of America

OCIS Codes
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(260.2110) Physical optics : Electromagnetic optics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: June 24, 2008
Revised Manuscript: July 17, 2008
Manuscript Accepted: July 18, 2008
Published: August 4, 2008

Rafif E. Hamam, Mihai Ibanescu, Evan J. Reed, Peter Bermel, Steven G. Johnson, Erich Ippen, J. D. Joannopoulos, and Marin Soljacic, "Purcell effect in nonlinear photonic structures: a coupled mode theory analysis," Opt. Express 16, 12523-12537 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, "Generation of Optical Harmonics," Phys. Rev. Lett. 6, 118-119 (1961). [CrossRef]
  2. M. Bass, P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, "Optical Mixing," Phys. Rev. Lett. 8, 18-18 (1962). [CrossRef]
  3. J. A. Giordmaine, "Mixing of Light Beams in Crystals," Phys. Rev. Lett. 8, 19-20 (1962). [CrossRef]
  4. P. D. Maker, R. W. Terhune, M. Nisenhoff, and C. M. Savage, "Effects of Dispersion and Focusing on the Production of Optical Harmonics," Phys. Rev. Lett. 8, 21-22 (1962). [CrossRef]
  5. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between Light Waves in a Nonlinear Dielectric," Phys. Rev. 127, 1918-1939 (1962). [CrossRef]
  6. N. Bloembergen and Y. R. Shen, "Quantum-Theoretical Comparison of Nonlinear Susceptibilities in Parametric Media, Lasers, and Raman Lasers," Phys. Rev. 133, A37-A49 (1964). [CrossRef]
  7. G. Eckardt, R. W. Hellwarth, F. J. McClung, S. E. Schwartz, D. Weiner, and E. J. Woodbury, "Stimulated Raman Scattering From Organic Liquids," Phys. Rev. Lett. 9, 455 (1962). [CrossRef]
  8. G. P. Agrawal, A. Hasegawa, Y. Kivshar, and S. Wabnitz, "Introduction to the Special Issue on Nonlinear Optics," IEEE J. Sel. Top. In Quantum Electron. 8, 405-407 (2002). [CrossRef]
  9. J. Squier and M. Müller, "High resolution nonlinear microscopy: a review of sources and methods for achieving optimal imaging," Rev. Sci. Instrum. 72, 2855-2867 (2001). [CrossRef]
  10. Yuri Kivshar, "Spatial solitons: Bending light at will," Nature Phys. 2, 729-730 (2006). [CrossRef]
  11. Günter Steinmeyer, "Laser physics: Terahertz meets attoscience," Nature Phys. 2, 305-306 (2006). [CrossRef]
  12. J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, "Self-similarity in ultrafast nonlinear optics," Nature Phys. 3, 597-603 (2007). [CrossRef]
  13. B. Ferguson and X. -Cheng Zhang, "Materials for terahertz science and technology," Nature Mater. 1, 26-33 (2002). [CrossRef]
  14. E. Mueller, "Terahertz radiation sources for imaging and sensing applications," Photon. Spectra. 40, 60 (2006).
  15. E. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
  16. M. Solja�?i�?, and J. D. Joannopoulos, "Enhancement of non-linear effects using photonic crystals," Nature Mater. 3, 211-219 (2004). [CrossRef] [PubMed]
  17. G. DAguanno, M. Centini, M. Scalora, C. Sibilia, Y. Dumeige, P. Vidakovic, J. A. Levenson, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, "Photonic band edge effects in finite structures and applications to |(2) interactions," Phys. Rev. E. 64, 016609 (2001). [CrossRef]
  18. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, 1995).
  19. J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Solja�?i�?, "Enhanced nonlinear optics in photonic-crystal microcavities," Opt. Express 15, 16161-16176 (2007). [CrossRef] [PubMed]
  20. T. Laroche, F. I. Baida, and D. Van Labeke, "Three-dimensional finite-difference time-domain study of enhanced second-harmonic generation at the end of a apertureless scanning near-field optical microscope metal tip," J. Opt. Soc. Am. B 22, 1045-1051 (2005). [CrossRef]
  21. K. Sakoda and K. Ohtaka, "Optical response of three-dimensional photonic lattices: Solutions of inhomogeneous Maxwells equations and their applications," Phys. Rev. B 54, 5732-5741 (1996). [CrossRef]
  22. K. Sakoda and K. Ohtaka, "Sum-frequency generation in a two-dimensional photonic lattice," Phys. Rev. B 54, 5742-5749 (1996). [CrossRef]
  23. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, New Jersey, 1984).
  24. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).
  25. C. Luo, M. Ibanescu, E. J. Reed, S. G. Johnson, and J. D. Joannopoulos, "Doppler Radiation Emitted by an Oscillating Dipole Moving inside a Photonic Band-Gap Crystal," Phys. Rev. Lett. 96, 043903 (2006). [CrossRef] [PubMed]
  26. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, "Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media," Phys. Rev. Lett. 53, 1555-1558 (1984). [CrossRef]
  27. M. Ibanescu, E. J. Reed, and J. D. Joannopoulos, "Enhanced Photonic Band-Gap Confinement via Van Hove Saddle Point Singularities," Phys. Rev. Lett. 96, 033904 (2006). [CrossRef] [PubMed]
  28. G. Chang, C. J. Divin, J. Yang, M. A. Musheinish, S. L. Williamson, A. Galvanauskas, and T. B. Norris, "GaP waveguide emitters for high power broadband THz generation pumped by Yb-doped fiber lasers," Opt. Express 15, 16308-16315 (2007). [CrossRef] [PubMed]
  29. T. Tanabe, K. Suto, J.-ichi Nishizawa, K. Saito, and T. Kimura, "Frequency-tunable terahertz wave generation via excitation of phonon-polaritons in GaP," J. Phys. D: Applied Physics 36, 953-957 (2003). [CrossRef]
  30. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell�??s equations in a planewave basis, " Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  31. R. W. Boyd, Nonlinear Optics (Academic Press, 2002).
  32. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, "Improving accuracy by subpixel smoothing in the finite-difference time domain," Opt. Lett. 31, 2972-2974 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited