OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 12538–12543

Coupled optical microcavities: an enhanced refractometric sensing configuration

Yun-Feng Xiao, Venkat Gaddam, and Lan Yang  »View Author Affiliations

Optics Express, Vol. 16, Issue 17, pp. 12538-12543 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (280 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically investigate the application of coupled optical microcavities as refractive index sensors. Coupled microcavities support a very sharp asymmetrical Fano resonance, which gives rise to faster changes in output transmission than the changes from a single cavity. With the output transmission at a fixed wavelength that varies much faster than it does in a single-cavity resonance, the result is enhanced sensitivity of the device to the changes in refractive index. In addition, it is observed that both thermal and optical Kerr effects can be utilized to improve the sensitivity.

© 2008 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Remote sensing and sensors

Original Manuscript: June 25, 2008
Revised Manuscript: July 29, 2008
Manuscript Accepted: July 29, 2008
Published: August 4, 2008

Yun-Feng Xiao, Venkat Gaddam, and Lan Yang, "Coupled optical microcavities: an enhanced refractometric sensing configuration," Opt. Express 16, 12538-12543 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Blair and Y. Chen, "Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities," Appl. Opt. 40, 570-582 (2001). [CrossRef]
  2. R. W. Boyd and J. E. Heebner, "Sensitive disk resonator photonic biosensor," Appl. Opt. 40, 5742-5747 (2001). [CrossRef]
  3. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002). [CrossRef]
  4. J. L. Nadeau, V. S. Iltchenko, D. Kossakovski, G. H. Bearman, and L. Maleki, "High-Q whispering-gallery mode sensor in liquids," in Proc. SPIE 4629, 172-180 (2002). [CrossRef]
  5. E. Krioukov, J. Greve, and C. Otto, "Performance of integrated optical microcavities for refractive index and fluorescence sensing," Sens. Actuators B 90, 58-67 (2003). [CrossRef]
  6. W. Fang, D. B. Buchholz, R. C. Bailey, J. F. Hupp, R. P. H. Chang, and H. Cao, "Detection of chemical species using ultraviolet microdisk lasers," Appl. Phys. Lett. 85, 3666-3668 (2004). [CrossRef]
  7. M. Noto, M. Khoshsima, D. Keng, I. Teraoka, V. Kolchenko, and S. Arnold, "Molecular weight dependence of a whispering gallery mode biosensor," Appl. Phys. Lett. 87, 223901 (2005). [CrossRef]
  8. I. M. White, H. Oveys, and X. Fan, "liquid-core optical ring-resonator sensors," Opt. Lett. 31, 1319-1321 (2006). [CrossRef] [PubMed]
  9. J. Yang and L. J. Guo, "Optical sensors based on active microcavities," IEEE J. Sel. Top. Quantum Electron. 12, 143-147 (2006) [CrossRef]
  10. A. M. Armani and K J. Vahala, "Heavy water detection using ultra-high-Q microcavities," Opt. Lett. 31, 1896-1898 (2006). [CrossRef] [PubMed]
  11. P. Zijlstra, K. L. van der Molen, and A. P. Mosk, "Spatial refractive index sensor using whispering gallery modes in an optically trapped microsphere," Appl. Phys. Lett. 90, 161101 (2007). [CrossRef]
  12. A. Francois and M. Himmelhaus, "Optical biosensor based on whispering gallery mode excitations in clusters of microparticles," Appl. Phys. Lett. 92, 141107 (2008). [CrossRef]
  13. J. T. Robinson, L. Chen, and M. Lipson, "On-chip gas detection in silicon optical microcavities," Opt. Express 16, 4296-4301 (2008). [CrossRef] [PubMed]
  14. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007). [CrossRef] [PubMed]
  15. S. Fan, "Sharp asymmetric lineshapes in side-coupled waveguide-cavity systems," Appl. Phys. Lett. 80, 908-910 (2002). [CrossRef]
  16. C.-Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003). [CrossRef]
  17. W. M. N. Passaro and F. D. Leonardis, "Modeling and design of a novel high-Sensitivity electric field silicon-on-insulator sensor based on a whispering-gallery-mode resonator," IEEE J. Sel. Top. Quantum Electron. 12, 124-133 (2006). [CrossRef]
  18. C. W. Gardiner and P. Zoller, Quantum Noise, Springer, 2004.
  19. J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, "Matrix analysis of microring coupled-resonator optical waveguides," Opt. Express 12, 91-103 (2004). [CrossRef]
  20. U. Fano, "Effects of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866-1878 (1961). [CrossRef]
  21. W. Liang, L. Yang, J. K. S. Poon, Y. Huang, K. J. Vahala, and A. Yariv, "Transmission characteristics of a Fabry-Perot etalon-microtoroid resonator coupled system," Opt. Lett. 31, 510-512 (2006). [CrossRef] [PubMed]
  22. L. Zhou and A. W. Poon, "Fano resonance-based electrically reconfigurable add-drop filters in silicon microring resonator-coupled Mach-Zehnder interferometers," Opt. Lett. 32, 781-783 (2007). [CrossRef] [PubMed]
  23. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, "Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency," Phys. Rev. Lett. 96, 123901 (2006). [CrossRef] [PubMed]
  24. L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko, "Tunable delay line with interacting whispering gallery mode resonators," Opt. Lett. 29, 626-628 (2004). [CrossRef] [PubMed]
  25. Y.-F. Xiao, J. Gao, X.-B. Zou, J. F. McMillan, X. Yang, Y.-L. Chen, Z.-F. Han, G.-C. Guo, and C. W. Wong, "Coupled quantum electrodynamics in photonic crystal nanocavities," http://arxiv.org/abs/0707.2632.
  26. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Modal coupling in traveling-wave resonators," Opt. Lett. 27, 1669-1671 (2002) [CrossRef]
  27. P. E. Barclay, B. Lev, K. Srinivasan, O. Painter, and H. Mabuchi, "Integration of fiber-coupled high-Q SiNx microdisks with atom chips," Appl. Phys. Lett. 89, 131108-131110 (2006). [CrossRef]
  28. I. M. White, N. M. Hanumegowda, H. Oveys, and X. Fan, "Tuning whispering gallery modes in optical microspheres with chemical etching," Opt. Express 13, 10754-10759 (2005). [CrossRef] [PubMed]
  29. M. L. Gorodetsky and I. S. Grudinin, "Fundamental thermal fluctuations in microspheres," J. Opt. Soc. Am. B 21, 697-705 (2004). [CrossRef]
  30. K. Djordjev, S. Choi, and P. D. Dapkus, "Microdisk tunable resonant filters and switches," IEEE Photon. Technol. Lett. 14, 828-830 (2002). [CrossRef]
  31. I. M. White and X. Fan, "On the performance quantification of resonant refractive index sensors," Opt. Express 16, 1020-1028 (2008). [CrossRef] [PubMed]
  32. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity," Phys. Rev. Lett. 93, 083904 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited