OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 12559–12570

Optical chirality without optical activity: How surface plasmons give a twist to light

Aurélien Drezet, Cyriaque Genet, Jean-Yves Laluet, and Thomas W. Ebbesen  »View Author Affiliations


Optics Express, Vol. 16, Issue 17, pp. 12559-12570 (2008)
http://dx.doi.org/10.1364/OE.16.012559


View Full Text Article

Enhanced HTML    Acrobat PDF (1310 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Light interacts differently with left and right handed three dimensional chiral objects, like helices, and this leads to the phenomenon known as optical activity. Here, by applying a polarization tomography, we show experimentally, for the first time in the visible domain, that chirality has a different optical manifestation for twisted planar nanostructured metallic objects acting as isolated chiral metaobjects. Our analysis demonstrate how surface plasmons, which are lossy bidimensional electromagnetic waves propagating on top of the structure, can delocalize light information in the just precise way for giving rise to this subtle effect.

© 2008 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.1585) Materials : Chiral media
(310.6628) Thin films : Subwavelength structures, nanostructures
(240.5440) Optics at surfaces : Polarization-selective devices

ToC Category:
Optics at Surfaces

History
Original Manuscript: June 12, 2008
Revised Manuscript: July 16, 2008
Manuscript Accepted: July 16, 2008
Published: August 5, 2008

Citation
Aurelien Drezet, Cyriaque Genet, Jean-Yves Laluet, and Thomas W. Ebbesen, "Optical chirality without optical activity: How surface plasmons give a twist to light," Opt. Express 16, 12559-12570 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-17-12559


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. -F.M. Arago, "Memoire sur une modification remarquable qu�??eprouvent les rayons lumineux dans leur passage a travers certains corps diaphanes, et sur quelques autres nouveaux phenomenes d�??optique," Mem. Inst. France Part I, 12 (1811).
  2. L. Pasteur, "Memoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarization rotatoire," C. R. Acad. Sci. Paris 26, 535-539 (1848).
  3. E. Hecht, Optics 2nd ed. (Addison-Wesley, Massachusetts, 1987). [PubMed]
  4. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of continuous media, 2nd ed. (Pergamon, New York, 1984). [PubMed]
  5. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen and N. I. Zheludev, "Asymmetric propagation of electromagnetic waves through a planar chiral structure," Phys. Rev. Lett. 97, 167401 (2006). [CrossRef] [PubMed]
  6. V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov and S. L. Prosvirnin, "Asymmetric transmission of light and enantiomerically sensistive plasmon resonance in planar chiral nanostructures," Nano Lett. 7, 1996-1999 (2007). [CrossRef]
  7. W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 (2003). [CrossRef] [PubMed]
  8. C. Genet, T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007). [CrossRef] [PubMed]
  9. J. B. Pendry, "A chiral route to negative refraction," Science 306, 1353-1355 (2004). [CrossRef] [PubMed]
  10. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles and N. I. Zheludev, "Optical manisfestation of planar chirality," Phys. Rev. Lett. 90, 107404 (2003). [CrossRef] [PubMed]
  11. A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats and N. I. Zheludev, "Broken time symmetry of light interaction with planar chiral nanostructures," Phys. Rev. Lett. 91, 247404 (2003). [CrossRef] [PubMed]
  12. T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa and Y. Svirko, "Optical activity in subwalength-period arrays of chiral metallic particles," Appl. Phys. Let. 83, 234-236 (2003). [CrossRef]
  13. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005). [CrossRef] [PubMed]
  14. B. K. Canfield, S. Kujala1, K. Jefimovs, J. Turunen and M. Kauranen, "Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles," Opt. Express 12, 5418-5423 (2004). [CrossRef] [PubMed]
  15. B. K. Canfield, S. Kujala1,K. Laiho1, K. Jefimovs, J. Turunen and M. Kauranen, "Remarkable polarization sensitivity of gold nanoparticle arrays," Opt. Express 12, 5418-5423 (2004). [CrossRef] [PubMed]
  16. W. Zhang, A. Potts, A. Papakostas and D. M. Bagnall, "Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials," Appl. Phys. Lett. 86, 231905 (2005). [CrossRef]
  17. M. Decker, M. W. Klein, M. Wegener and S. Linden, "Circular dichroism of planar chiral magnetic metamaterials," Opt. Lett. 32, 856-858 (2007). [CrossRef] [PubMed]
  18. E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev and Y. Chen "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007). [CrossRef]
  19. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke and N. I. Zheludev, "Giant gyrotropy due to electromagneticfield coupling in a bilayered chiral structure." Phys. Rev. Lett. 97, 177401 (2006). [CrossRef] [PubMed]
  20. J. C. Bose, "On the rotation of plane of polarization of electric waves by a twisted structure." Proc. R. Soc. London A 63, 146-152 (1898). [CrossRef]
  21. L. Hecht, L. D. Barron, "Rayleigh and Raman optical activity from chiral surfaces," Chem. Phys. Lett. 225, 525-530 (1994). [CrossRef]
  22. L. D. Barron, "Parity and optical activity," Nature 238, 17-19 (1972). [CrossRef] [PubMed]
  23. S. L. Prosvirnin and N. I. Zheludev,"Polarization effects in the diffraction of light by planar chiral structure", Phys. Rev. E 71, 037603 (2005). [CrossRef]
  24. A. Krasavin, A. S. Schwanecke and N. I. Zheludev, J. Opt. A: Pure Appl. Opt. 8, S98-S105 (2006). [CrossRef]
  25. M. Reichelt, S. W. Koch, A. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright and N. I. Zheludev, "Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures," Appl. Phys. B 84, 97-101 (2006). [CrossRef]
  26. A. Degiron and T. W. Ebbesen, "Analysis of the transmission process through a single aperture surrounded by periodic corrugations," Opt. Express 12, 3694-3700 (2004). [CrossRef] [PubMed]
  27. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal and T. W. Ebbesen, "beaming light from a subwavelength aperture," Science 297, 820-822 (2002). [CrossRef] [PubMed]
  28. F. Le Roy-Brehonnet, B. Le Jeune, "Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties," Prog. Quantum Electron 21, 109-151 (1997). [CrossRef]
  29. E. Altewisher, C. Genet, M. P. van Exter, J. P. Woerdman, P. F. A. Alkemade, A. van Zuukand E. W. J. M. van der drift, "Polarization tomography of metallic nanohole arrays," Opt. Lett. 30, 90-92 (2005). [CrossRef]
  30. C. Genet, E. Altewischer, M. P. van Exter and J. P. Woerdman, "Optical depolarization induced by arrays of subwavelength metal holes," Phys. Rev. B. 71, 033409 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited