OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 12599–12606

Enhancement of optical Kerr effect in quantum-cascade lasers with multiple resonance levels

Jing Bai and D. S. Citrin  »View Author Affiliations

Optics Express, Vol. 16, Issue 17, pp. 12599-12606 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (291 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we investigated the optical Kerr lensing effect in quantum-cascade lasers with multiple resonance levels. The Kerr refractive index n2 is obtained through the third-order susceptibility at the fundamental frequency χ(3)(ω; ω, ω,-ω). Resonant two-photon processes are found to have almost equal contributions to χ(3)(ω; ω, ω,-ω) as the single-photon processes, which result in the predicted enhancement of the positive nonlinear (Kerr) refractive index, and thus may enhance mode-locking of quantum-cascade lasers. Moreover, we also demonstrate an isospectral optimization strategy for further improving n2 through the band-structure design, in order to boost the multimode performance of quantum-cascade lasers. Simulation results show that the optimized stepwise multiple-quantum-well structure has n2≈10-8 cm2/W, a twofold enhancement over the original flat quantum-well structure. This leads to a refractive-index change Δn of about 0.01, which is at the upper bound of those reported for typical Kerr medium. This stronger Kerr refractive index may be important for quantum-cascade lasers ultimately to demonstrate self-mode-locking.

© 2008 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Nonlinear Optics

Original Manuscript: May 5, 2008
Revised Manuscript: July 25, 2008
Manuscript Accepted: July 31, 2008
Published: August 6, 2008

Jing Bai and D. S. Citrin, "Enhancement of optical Kerr effect in quantum-cascade lasers with multiple resonance levels," Opt. Express 16, 12599-12606 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Gmachl, A. Belyanin, D. L. Sivco, M. L. Peabody, N. Owschimikow, A. M. Sergent, F. Capasso, and A. Y. Cho, "Optimized second-harmonic generation in quantum cascade lasers," IEEE J. Quantum Electron. 39, 1345-1355 (2003). [CrossRef]
  2. T. S. Mosely, A. Belyanin, C. Gmachl, D. L. Sivco, M. L. Peabody, and A. Y. Cho, "Third harmonic generation in quantum cascade laser with monolithically integrated resonant optical nonlinearity," Opt. Express 12, 2972-2976 (2004). [CrossRef] [PubMed]
  3. D. Qu, F. Xie, G. Shu, S. Momen, E. Narimanov, and C. F. Gmachl, "Second-harmonic generation in quantum cascade lasers with electric field and current dependent nonlinear susceptibility, " Appl. Phys. Lett,  90, 031105 (2007). [CrossRef]
  4. J. Bai and D. S. Citrin, "Supersymmetric optimization of second-harmonic generation in mid-infrared quantum cascade lasers," Opt. Express 14, 4043-4048 (2006). [CrossRef] [PubMed]
  5. J. Bai and D. S. Citrin, "Optical and transport characteristics of quantum-cascade lasers with optimized second-harmonic generation," IEEE J. Quantum Electron. 43, 391-398 (2007). [CrossRef]
  6. F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, "Quantum cascade lasers," Phys. Today 55, 34 (2002). [CrossRef]
  7. G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek and U. Keller, "Frontiers in ultrashort pulse generation: pushing the limits in linear and optics," Science 286, 1507-1512 (1999). [CrossRef] [PubMed]
  8. H. A. Haus, "Mode-locking of lasers," IEEE J. Quantum Electron. 6,1173-1185 (2000). [CrossRef]
  9. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, "Analytic theory of additive pulse and Kerr lens mode locking," IEEE J. Quantum Electron. 28, 2086-2096 (1992). [CrossRef]
  10. G. P. Agrawal, Nonlinear Fiber Optics, 3rd Ed. (Academic Press, San Diego, 2001), Chap. 4.
  11. R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, H. C. Liu, "Self-mode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities," Science 290, 1739-1742 (2000). [CrossRef] [PubMed]
  12. C. Y. Yang, L. Diehl, A. Gordon, C. Jirauschek, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, M. Troccoli, J. Faist, and F. Capasso, "Coherent instabilities in a semiconductor laser with fast gain recovery," Phys. Rev. A 75, 031802(R) (2007). [CrossRef]
  13. H. Risken and K. Nummedal, "Self-pulsing in lasers," J. Appl. Phys. 39, 4662-4672 (1968). [CrossRef]
  14. Graham and H. Haken, "Quantum theory of light propagation in a fluctuating laser-active medium," Zeitschrift für Physik. A 213, 420-450 (1968).
  15. R. Paiella, R. Martini, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, J. N. Baillargeon, A. Y, Cho, E. A. Whittaker, and H. C. Liu, "High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers," Appl. Phys. Lett. 79, 2526-2528 (2001). [CrossRef]
  16. A. Gordon, C.Y. Yang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, "Multimode regimes in quantum cascade lasers: from coherent instabilities to special hole burning," Phys. Rev. A,  77, 053804 (2008). [CrossRef]
  17. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, San Diego, 2003), 528-531.
  18. L. Ding, R. Blackwell, J. F. Künzler, and W. H. Knox, "Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining," Opt. Express 14, 11901-11909 (2006). [CrossRef] [PubMed]
  19. O. Madelung, Semiconductors-Basic Data, 3rd Ed. (Springer, New York, 1996), Chap. 2. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited