OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 12607–12617

A novel, low-cost, high performance dissolved methane sensor for aqueous environments

Cédric Boulart, Matthew C. Mowlem, Douglas P. Connelly, Jean-Pierre Dutasta, and Christopher R. German  »View Author Affiliations


Optics Express, Vol. 16, Issue 17, pp. 12607-12617 (2008)
http://dx.doi.org/10.1364/OE.16.012607


View Full Text Article

Enhanced HTML    Acrobat PDF (2824 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new method for in-situ detection and measurement of dissolved methane in aqueous media/environments with a limit of detection of 0.2 nM (3σ, and t90~110s) and range (1–300 nM) is presented. The detection method is based on refractive index (RI) modulation of a modified PolyDiMethylSiloxane (PDMS) layer incorporating molecules of cryptophane-A [1] which have a selective and reversible affinity for methane [2]. The refractive index is accurately determined using surface plasmon resonance (SPR) [3]. A prototype sensor has been repeatedly tested, using a dissolved gas calibration system under a range of temperature and salinity regimes. Laboratory-based results show that the technique is specific, sensitive, and reversible. The method is suitable for miniaturization and incorporation into in situ sensor technology.

© 2008 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(130.6010) Integrated optics : Sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and oceanic optics

History
Original Manuscript: April 29, 2008
Revised Manuscript: May 28, 2008
Manuscript Accepted: May 28, 2008
Published: August 6, 2008

Citation
Cédric Boulart, Matthew C. Mowlem, Douglas P. Connelly, Jean-Pierre Dutasta, and Christopher R. German, "A novel, low-cost, high performance dissolved methane sensor for aqueous environments," Opt. Express 16, 12607-12617 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-17-12607


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Souteyrand, D. Nicolas, J. R. Martin, J. P. Chauvet, and H. Perez, "Behaviour of cryptophane molecules in gas media," Sens. Actuators B 33, 182-187 (1996). [CrossRef]
  2. L. Garel, J. P. Dutasta, and A. Collet, "Complexation of methane and chlorofluorocarbons by cryptophane-A in organic solution," Angew.Chem. Int. Ed. Engl. 32, 1169-1171 (1993). [CrossRef]
  3. T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, "Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor," Sens. Actuators B 91, 266-274 (2003). [CrossRef]
  4. W. S. Reeburgh, "Global Methane Biogeochemistry," Treatise on Geochemistry 4, 1-25 (2003).
  5. D. Amouroux, G. Roberts, S. Rapsomanikis, and M. O. Andreae, "Biogenic gas (CH4, N2O, DMS) Emission to the Atmosphere from Near-Shore of the North-western Black Sea," Estuar. Coast. Shelf Sci. 54, 575-587 (2002). [CrossRef]
  6. G. Rehder, R. W. Collier, K. Heeschen, P. M. Kosro, J. Barth, and E. Suess, "Enhanced marine CH4 emissions to the atmosphere off Oregon caused by coastal upwelling," Global Biogeochem. Cycles 16, 10.1029/2000GB001391 (2002). [CrossRef]
  7. E. J. Sauter, S. I. Muyakshin, J.-L. Charlou, M. Schlüter, A. Boetius, K. Jerosch, E. Damm, J.-P. Foucher, and M. Klages, "Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles," Earth Planet. Sci. Lett. 243, 354-365 (2006). [CrossRef]
  8. H. W. Bange, U. H. Bartell, S. Rapsomanikis, and M. O. Andreae, "Methane in the Baltic and North Seas and a reassessment of the marine emission of methane," Global Biogeochem. Cycles 8, 465-480 (1994). [CrossRef]
  9. S. Houweling, T. Kaminski, F. Dentener, J. Lelieveld, and M. Heimann, "Inverse modeling of methane sources and sinks using the adjoint of a global transport model," J. Geophys. Res. 106, 26137-26160 (1999). [CrossRef]
  10. W. J. Mitsch and J. G. Gosselink, Wetlands (Wiley, New York, 2000).
  11. E. T. Baker, R. N. Hey, J. E. Lupton, J. A. Resing, R. A. Feely, J. J. Gharib, G. J. Massoth, F. J. Sansone, M. Kleinrock, F. Martinez, D. F. Naar, C. Rodrigo, D. Bohnenstiehl, and D. Pardee, "Hydrothermal venting along Earth's fastest spreading center: East Pacific Rise, 27.5o-32.3oS," J. Geophys. Res. 107, 2130 doi:2110.1029/2001JB000651 (2002). [CrossRef]
  12. K. A. Kvenvolden, "Methane hydrate-a major reservoir of carbon in the shallow geosphere?," Chem. Geol. 71, 41-51 (1988). [CrossRef]
  13. R. W. Collier and M. D. Lilley, "Composition of shelf methane seeps on the Cascadia Continental Margin," Geophys. Res. Lett. 32, L06609, doi:06610.01029/02004GL022050 (2005). [CrossRef]
  14. S. Kroger and R. J. Law, "Sensing the sea," Trends in Biotechnology 23, 250-256 (2005). [CrossRef] [PubMed]
  15. J. Bussell, G. Klinkhammer, R. W. Collier, P. Linke, F. Appel, K. Heeschen, E. Suess, M. A. De Angelis, and M. Masson, "Applications of the METS methane sensor to the in situ determination of methane over a range of timescales and environments," in EOS Trans. Am. Geophys. Union(1999).
  16. R. T. Short, D. P. Fries, S. K. Toler, C. E. Lembke, and R. H. Byrne, "Development of an underwater mass-spectrometry system for in situ chemical analysis," Meas. Sci. Technol. 10, 1195-1201 (1999). [CrossRef]
  17. 1. S. De Gregorio, S. Gurrieri, and M. Valenza, "A PTFE membrane for the in situ extraction of dissolved gases in natural waters: Theory and applications," Geochem. Geophys. Geosyst. 6, Q09005, doi:09010.01029/02005GC000947 (2005). [CrossRef]
  18. R. Camilli and H. Hemond, "NEREUS/Kemonaut, a mobile autonomous underwater mass spectrometer," Trends in analytical chemistry 23, 307-313 (2004). [CrossRef]
  19. R. Collier, and G. Klinkhammer, "Applications of the METS Methane Sensor to the In-situ Detection of Methane Over a Range of Time Scales and Environments," in RIDGE In situ Sensors Workshop(2000).
  20. H.-D. Kronfeldt, H. Schmidt, H. Amann, B. D. MacCraith, M. Lehaitre, M. Leclercq, E. Bernabeu, B. Mizaikoff, and D. Grant, "Technical elements and Potential Application of Spectroscopy for Ocean Monitoring," in OCEANS'98(1998), pp. 1780-1784.
  21. B. Mizaikoff, "Mid-Infrared evanescent wave sensors - a novel approach for subsea monitoring," Meas. Sci. Technol. 10, 1185-1194 (1999). [CrossRef]
  22. T. Murphy, S. Lucht, H. Schmidt, and H.-D. Kronfeldt, "Surface-enhanced Raman scattering (SERS) system for continuous measurements of chemicals in sea-water," J. Raman. Spectrosc. 31, 943-948 (2000). [CrossRef]
  23. P. G. Brewer, G. Malb, J. D. Pasteris, S. N. White, T. Peltzer, B. Wopenka, J. Freeman, and M. O. Brown, "Development of a laser Raman spectrometer for deep-ocean science," Deep Sea Res. I 51, 739-753 (2004). [CrossRef]
  24. H. Schmidt, N. Bich Ha, J. Pfannkuche, H. Amann, H.-D. Kronfeldt, and G. Kowalewska, "Detection of PAHs in seawater using surface-enhanced Raman scattering (SERS)," Mar. Poll. Bull. 49, 229-234 (2004). [CrossRef]
  25. K. Ideta and T. Arakawa, "Surface plasmon resonance study for the detection of some chemical species," Sens. Actuators B 13, 384-386 (1993). [CrossRef]
  26. E. Mauriz, A. Calle, A. Abad, A. Montoya, A. Hildebrandt, D. Barcelo, and L. M. Lechuga, "Determination of carbaryl in natural water samples by a surface plasmon resonance flow-through immunosensor," Biosens. Bioelectron. 21, 2129-2136 (2006). [CrossRef]
  27. B. C. Sih, M. O. Wolf, D. Jarvis, and J. F. Young, "Surface-plasmon resonance sensing of alcohol with electrodeposited polythiophene and gold nanoparticle-oligothiophene films," J. Appl. Phys. 98, 10.1063/1061.2138373 (2005). [CrossRef]
  28. T. Urashi and T. Arakawa, "Detection of lower hydrocarbons by means of surface plasmon resonance," Sens. Actuators B 76, 32-35 (2001). [CrossRef]
  29. C. Nylander, B. Liedberg, and T. Lind, "Gas detection by means of surface plasmon resonance," Sens. Actuators 3, 79-88 (1982). [CrossRef]
  30. A. Collet, J.-P. Dutasta, B. Lozach, and J. Canceill, "Cyclotriveratrylenes and cryptophanes: Their synthesis and applications to host-guest chemistry and to the design of new materials," in Supramolecular Chemistry I ?? Directed Synthesis and Molecular Recognition(1993), pp. 103-129.
  31. K. Bartik, M. Luhmer, J. P. Dutasta, A. Collet, and J. Reisse, "129Xe and 1H NMR Study of the Reversible Trapping of Xenon by Cryptophane-A in Organic Solution," J. Am. Chem. Soc. 120, 784-791 (1998). [CrossRef]
  32. Z. Tosner, O. Petrov, S. V. Dvinskikh, J. Kowalewski, and D. Sandstrom, "A 13C solid-state NMR study of cryptophane-E:chloromethane inclusion complexes," Chem. Phys. Lett. 388, 208-211 (2004). [CrossRef]
  33. M. Benounis, N. Jaffrezic-Renault, J. P. Dutasta, K. Cherif, and A. Abdelghani, "Study of a new evanescent wave optical fibre sensor for methane detection based on cryptophane molecules," Proceedings of the 7th European Conference on Optical Chemical Sensors and Biosensors - EUROPT(R)ODE VII 107, 32 (2005).
  34. M. Benounis, T. Aka-Ngnui, N. Jaffrezic, and J. P. Dutasta, "NIR and optical fiber sensor for gases detection produced by transformation oil degradation," Sens. Actuators A 141, 76-83 (2008). [CrossRef]
  35. J. Gabard and A. Collet, "Synthesis of a (D3)-Bis(cyclotriveratrylenyl) Macrocage by Stereospecific Replication of a (C3)-Subunit," J.C.S. Chem. Comm. 21, 1137-1139 (1981). [CrossRef]
  36. J. Canceill and A. Collet, "Two-step Synthesis of D3 and C3h Cryptophanes," J.C.S. Chem. Comm. 9, 582-584 (1988). [CrossRef]
  37. T. Brotin, N. Roy, and J. P. Dutasta, "Improved Synthesis of Functional CTVs and Cryptophanes Using Sc(OTf)3 as Catalyst," J. Org. Chem. 70, 6187-6195 (2005). [CrossRef] [PubMed]
  38. E. Kretschmann and H. Raether, "Radiative decay of nonradiative surface plasmons by light," Naturforsch A 23, 2135-2136 (1963).
  39. P. J. Brockwell, and R. A. Davis, The Analysis of Time Series: Theory and Methods (Springer-Verlag, New York, 1986).
  40. J. W. Swinnerton and V. J. Linnenbom, "Determination of the C1 to C4 hydrocarbons in sea water by gas chromatography," Journal of Gas Chromatography 5, 570-573 (1967).
  41. M. Sosna, G. Denuault, R. W. Pascal, R. D. Prien, and M. Mowlem, "Development of a reliable microelectrode dissolved oxygen sensor," Sens. Actuators B 123, 344-351 (2007). [CrossRef]
  42. R. Schirrer, P. Thepin, and G. Torres, "Water absorption, swelling, rupture and salt release in salt-silicone rubber compounds," J. Mat. Sci. 27, 3424-3434 (1992). [CrossRef]
  43. T. Shioda, N. Takamatsu, K. Suzuki, and S. Shichijyo, "Influence of water sorption on refractive index of fluorinated polyimide," Polymer 44, 137-142 (2003). [CrossRef]
  44. L. A. Currie, "Detection: International update, and some emerging dilemmas involving calibration, the blank and multiple detection decisions," Chemom. Intell. Lab. Systems 37, 151-181 (1997). [CrossRef]
  45. W. S. Reeburgh, "Oceanic Methane Biogeochemistry," Chem. Rev. 107, 486-513 (2007). [CrossRef] [PubMed]
  46. J.-L. Charlou and J.-P. Donval, "Hydrothermal methane venting between 12oN and 26oN along the Mid-Atlantic Ridge," J. Geophys. Res. 98, 9625-9642 (1993). [CrossRef]
  47. J. P. Cowen, X. Wen, and B. N. Popp, "Methane in aging hydrothermal plumes," Geochim. Cosmoch. Acta 66, 3563-3571 (2002). [CrossRef]
  48. C. K. Paull, W. UsslerIII, W. S. Borowski, and F. N. Spiess, "Methane-rich plumes on the Carolina continental rise: Associations with gas hydrates," Geology 23, 89-92 (1995). [CrossRef]
  49. J. L. Charlou, J. P. Donval, T. Zitter, N. Roy, P. Jean-Baptiste, J. P. Foucher, and J. Woodside, "Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean Sea," Deep Sea Res. I 50, 941-958 (2003). [CrossRef]
  50. J. J. Middelburg, J. Nieuwenhuize, N. Iversen, N. Høgh, H. de Wilde, W. Helder, R. Seifert, and O. Christof, "Methane distribution in European tidal estuaries," Biogeochemistry 59, 95-119 (2002). [CrossRef]
  51. N. Shakova, I. Semiletov, and G. Panteleev, "The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle," Geophys. Res. Lett. 32 (2005).
  52. V. Kitidis, L. H. Tizzard, G. Uher, A. G. Judd, R. C. Upstill-Goddard, I. M. Head, N. D. Gray, G. Taylor, R. Duran, J. Iglesias, and S. Garcia-Gil, "The biogeochemical Cycling of Methane in Ria de Vigo, NW Spain: sediment Processing and Sea-Air exchange," J. Mar. Syst. 66, 258-271 (2006). [CrossRef]
  53. H. W. Bange, R. Ramesh, S. Rapsomanikis, and M. O. Andreae, "Methane in surface waters of the Arabian Sea," Geophys. Res. Lett. 25, 3547-3550 (1998). [CrossRef]
  54. G. L. Klunder, J. Bürck, H.-J. Ache, R. J. Silva, and R. E. Russo, "Temperature Effects on a Fiber-Optic Evanescent Wave Absorption Sensor," Appl. Spectrosc. 48, 387-393 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited