OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 12737–12745

Intrinsic Raman spectroscopy for quantitative biological spectroscopy Part II: Experimental applications

Kate L. Bechtel, Wei-Chuan Shih, and Michael S. Feld  »View Author Affiliations

Optics Express, Vol. 16, Issue 17, pp. 12737-12745 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (282 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the effectiveness of intrinsic Raman spectroscopy (IRS) at reducing errors caused by absorption and scattering. Physical tissue models, solutions of varying absorption and scattering coefficients with known concentrations of Raman scatterers, are studied. We show significant improvement in prediction error by implementing IRS to predict concentrations of Raman scatterers using both ordinary least squares regression (OLS) and partial least squares regression (PLS). In particular, we show that IRS provides a robust calibration model that does not increase in error when applied to samples with optical properties outside the range of calibration.

© 2008 Optical Society of America

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.5280) Medical optics and biotechnology : Photon migration
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: May 27, 2008
Revised Manuscript: July 19, 2008
Manuscript Accepted: July 24, 2008
Published: August 7, 2008

Virtual Issues
Vol. 3, Iss. 10 Virtual Journal for Biomedical Optics

Kate L. Bechtel, Wei-Chuan Shih, and Michael S. Feld, "Intrinsic Raman spectroscopy for quantitative biological spectroscopy Part II: Experimental applications," Opt. Express 16, 12737-12745 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. N. Zhadin and R. R. Alfano, "Correction of the internal absorption effect in fluorescence emission and excitation spectra from absorbing and highly scattering media: Theory and experiment," J. Biomed. Opt. 3, 171-186 (1998). [CrossRef]
  2. N. C. Biswal, S. Gupta, N. Ghosh, and A. Pradhan, "Recovery of turbidity free fluorescence from measured fluorescence: an experimental approach," Opt. Express 11, 3320-3331 (2003). [CrossRef] [PubMed]
  3. J. C. Finlay and T. H. Foster, "Recovery of hemoglobin oxygen saturation and intrinsic fluorescence with a forward-adjoint model," Appl. Opt. 44, 1917-1933 (2005). [CrossRef] [PubMed]
  4. J. Wu, M. S. Feld, and R. P. Rava, "Analytical model for extracting intrinsic fluorescence in turbid media," Appl. Opt. 32, 3585-3595 (1993). [CrossRef] [PubMed]
  5. M. G. Muller, I. Georgakoudi, Q. G. Zhang, J. Wu, and M. S. Feld, "Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption," Appl. Opt. 40, 4633-4646 (2001). [CrossRef]
  6. S. Kuba and H. Knozinger, "Time-resolved in situ Raman spectroscopy of working catalysts: sulfated and tungstated zirconia," J. Raman Spectrosc. 33, 325-332 (2002). [CrossRef]
  7. T. A. Nijhuis, S. J. Tinnemans, T. Visser, and B. M. Weckhuysen, "Operando spectroscopic investigation of supported metal oxide catalysts by combined time-resolved UV-VIS/Raman/on-line mass spectrometry," Phys. Chem. Chem. Phys. 5, 4361-4365 (2003). [CrossRef]
  8. P. J. Aarnoutse and J. A. Westerhuis, "Quantitative Raman reaction monitoring using the solvent as internal standard," Anal. Chem. 77, 1228-1236 (2005). [CrossRef] [PubMed]
  9. S. J. Tinnemans, M. H. F. Kox, T. A. Nijhuis, T. Visser, and B. M. Weckhuysen, "Real time quantitative Raman spectroscopy of supported metal oxide catalysts without the need of an internal standard," Phys. Chem. Chem. Phys. 7, 211-216 (2005). [CrossRef] [PubMed]
  10. V. V. Tuchin, Tissue optics: light scattering methods and instruments for medical diagnosis (SPIE Press, Bellingham, Wash., 2000).
  11. M. Tsuboi, "Raman scattering anisotropy of biological systems," J. Biomed. Opt. 7, 435-441 (2002). [CrossRef] [PubMed]
  12. A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, "Raman spectroscopy for noninvasive glucose measurements," J. Biomed. Opt. 10, 031114 (2005). [CrossRef] [PubMed]
  13. W. -C. Shih, K. L. Bechtel, and M. S. Feld, " Quantitative biological Raman spectroscopy," V. V. Tuchin, Taylor and Francis, eds., in Handbook of Optical Sensing of Glucose in biological fluids and tissues, 2008) Chap. 12.
  14. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. Vangemert, "Optical-Properties of Intralipid - a Phantom Medium for Light-Propagation Studies," Lasers Surg. Med. 12, 510-519 (1992). [CrossRef] [PubMed]
  15. A. M. K. Enejder, Doctoral Thesis, Department of Physics, Lund Institute of Technology (1997).
  16. I. E. Frank and J. H. Friedman, "A Statistical View of Some Chemometrics Regression Tools," Technometrics 35, 109-135 (1993). [CrossRef]
  17. S. Wold, H. Martin, and H. Wold, Lecture Notes in Mathematics (Springer-Verlag, Heidelberg, 1983).
  18. W.-C. Shih, K. L. Bechtel, and M. S. Feld, "Constrained regularization: Hybrid method for multivariate calibration," Anal. Chem. 79, 234-239 (2007). [CrossRef]
  19. G. Zonios, L. T. Perelman, V. M. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, "Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo," Appl. Opt. 38, 6628-6637 (1999). [CrossRef]
  20. T. J. Farrell, M. S. Patterson, and B. Wilson, "A Diffusion-Theory Model of Spatially Resolved, Steady-State Diffuse Reflectance for the Noninvasive Determination of Tissue Optical-Properties Invivo," Med. Phys. 19, 879-888 (1992). [CrossRef] [PubMed]
  21. J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, "Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths," Appl. Opt. 40, 1155-1164 (2001). [CrossRef]
  22. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999). [CrossRef] [PubMed]
  23. M. G. Nichols, E. L. Hull, and T. H. Foster, "Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems," Appl. Opt. 36, 93-104 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited