OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 12786–12793

Shaping ultrafast laser inscribed optical waveguides using a deformable mirror

R. R. Thomson, A. S. Bockelt, E. Ramsay, S. Beecher, A. H. Greenaway, A. K. Kar, and D. T. Reid  »View Author Affiliations


Optics Express, Vol. 16, Issue 17, pp. 12786-12793 (2008)
http://dx.doi.org/10.1364/OE.16.012786


View Full Text Article

Enhanced HTML    Acrobat PDF (1045 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We use a two-dimensional deformable mirror to shape the spatial profile of an ultrafast laser beam that is then used to inscribe structures in a soda-lime silica glass slide. By doing so we demonstrate that it is possible to control the asymmetry of the cross section of ultrafast laser inscribed optical waveguides via the curvature of the deformable mirror. When tested using 1.55 µm light, the optimum waveguide exhibited coupling losses of ≈0.2 dB/facet to Corning SMF-28 single mode fiber and propagation losses of ≈1.5 dB.cm-1. This technique promises the possibility of combining rapid processing speeds with the ability to vary the waveguide cross section along its length.

© 2008 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3390) Lasers and laser optics : Laser materials processing

ToC Category:
Integrated Optics

History
Original Manuscript: July 1, 2008
Revised Manuscript: July 29, 2008
Manuscript Accepted: August 4, 2008
Published: August 7, 2008

Citation
R. R. Thomson, A. S. Bockelt, E. Ramsay, S. Beecher, A. H. Greenaway, A. K. Kar, and D. T. Reid, "Shaping ultrafast laser inscribed optical waveguides using a deformable mirror," Opt. Express 16, 12786-12793 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-17-12786


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996) http://www.opticsinfobase.org/abstract.cfm?URI=ol-21-21-1729 [CrossRef] [PubMed]
  2. M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, "Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses," Opt. Express 13, 5676-5681 (2005). [CrossRef] [PubMed]
  3. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, "Femtosecond writing of active optical waveguides with astigmatically shaped beams," J. Opt. Soc. Am. B 20, 1559-1567 (2003) http://www.opticsinfobase.org/abstract.cfm?URI=josab-20-7-1559. [CrossRef]
  4. Y. Nasu, M. Kohtoku, and Y. Hibino, "Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit," Opt. Lett. 30, 723-725 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-7-723 [CrossRef] [PubMed]
  5. C. B. Schaffer, A. Brodeur and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784-1794 (2001) [CrossRef]
  6. A. H. Nejadmalayeri and P. R. Herman, "Ultrafast laser waveguide writing: lithium niobate and the role of circular polarization and picosecond pulse width," Opt. Lett. 31, 2987-2989 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-20-2987 [CrossRef] [PubMed]
  7. W. Yang, P. G. Kazansky, Y. P. Svirko, "Non-reciprocal ultrafast laser writing," Nat. Photonics 2, 99-104 (2008) [CrossRef]
  8. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. Chen, S. Ho, and P. R. Herman, "Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides," Opt. Express 16, 9443-9458 (2008). [CrossRef] [PubMed]
  9. G. D. Marshall, M. Ams, and M. J. Withford, "Direct laser written waveguide-Bragg gratings in bulk fused silica," Opt. Lett. 31, 2690-2691 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-18-2690 [CrossRef] [PubMed]
  10. H. Zhang, S. M. Eaton, and P. R. Herman, "Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser," Opt. Lett. 32, 2559-2561 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-17-2559 [CrossRef] [PubMed]
  11. M. Ams, G. D. Marshall, and M. J. Withford, "Study of the influence of femtosecond laser polarisation on direct writing of waveguides," Opt. Express 14, 13158-13163 (2006). [CrossRef] [PubMed]
  12. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, "Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser," Opt. Lett. 28, 55-57 (2003) http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-1-55 [CrossRef] [PubMed]
  13. Menzel Gläser product information sheet, "Erie Electroverre SA" http://www.menzel.de/fileadmin/Templates/Menzel/pdf/en/EVR_en.pdf
  14. R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. MacPherson, J. S. Barton, D. T. Reid, and A. K. Kar, "Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications," Opt. Express 15, 11691-11697 (2007). [CrossRef] [PubMed]
  15. R. R. Thomson, H. T. Bookey, N. Psaila, S. Campbell, D. T. Reid, S. Shen. A. Jha, A. K. Kar, "Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription," IEEE Photon. Technol. Lett. 18, 1515-1517 (2006). [CrossRef]
  16. "Product Information PI1036" (Corning Incorporated, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited