OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 12806–12818

Synthesis design of artificial magnetic metamaterials using a genetic algorithm

P. Y. Chen, C. H. Chen, H. Wang, J. H. Tsai, and W. X. Ni  »View Author Affiliations


Optics Express, Vol. 16, Issue 17, pp. 12806-12818 (2008)
http://dx.doi.org/10.1364/OE.16.012806


View Full Text Article

Enhanced HTML    Acrobat PDF (602 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this article, we present a genetic algorithm (GA) as one branch of artificial intelligence (AI) for the optimization-design of the artificial magnetic metamaterial whose structure is automatically generated by computer through the filling element methodology. A representative design example, metamaterials with permeability of negative unity, is investigated and the optimized structures found by the GA are presented. It is also demonstrated that our approach is effective for the synthesis of functional magnetic and electric metamaterials with optimal structures. This GA-based optimization-design technique shows great versatility and applicability in the design of functional metamaterials.

© 2008 Optical Society of America

OCIS Codes
(350.4010) Other areas of optics : Microwaves
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: January 8, 2008
Revised Manuscript: March 15, 2008
Manuscript Accepted: March 17, 2008
Published: August 8, 2008

Citation
P. Y. Chen, C. H. Chen, H. Wang, J. H. Tsai, and W. X. Ni, "Synthesis design of artificial magnetic metamaterials using a genetic algorithm," Opt. Express 16, 12806-12818 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-17-12806


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996). [CrossRef] [PubMed]
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  4. D. R. Smith and N. Kroll, "Negative refractive index in left-handed materials," Phys. Rev. Lett. 85, 2933-2936 (2000). [CrossRef] [PubMed]
  5. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  6. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a Negative Index of Refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  7. T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Phys. Rev. E 68, 065602-1-4 (2003). [CrossRef]
  8. T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of left-handed materials," Phys. Rev. Lett. 93, 107402-1-4 (2004). [CrossRef] [PubMed]
  9. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006). [CrossRef] [PubMed]
  10. W. Zhu, X. Zhao, and N. Ji, "Double bands of negative refractive index in the left-handed metamaterials with asymmetric defects," Appl. Phys. Lett. 90, 011911-1-3 (2007). [CrossRef]
  11. H. Chen, L. Ran, J Huangfu, X. Zhang, and K. Chen, "Left-handed materials composed of only S-shaped resonators," Phys. Rev. E 70, 057605-1-4 (2004). [CrossRef]
  12. H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Negative refraction of a combined double S-shaped metamaterial," Appl. Phys. Lett. 86, 151909-1-3 (2005). [CrossRef]
  13. K.  Aydin, Z. Li, M.  Hudli�?ka, S. A.  Tretyakov, and E.  Ozbay, "Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions," New J. Phys. 9, 326-336 (2007). [CrossRef]
  14. X. Zhou, Q. H. Fu, J. Zhao, Y. Yang, and X. P. Zhao, "Negative permeability and subwavelength focusing of quasi-periodic dendritic cell metamaterials," Opt. Express 14, 7188-7197 (2006). [CrossRef] [PubMed]
  15. M. Kafesaki, T. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, "Left-handed metamaterials: detailed numerical studies of the transmission properties," J. Opt. A: Pure Appl. Opt. 7, S12-S22 (2005). [CrossRef]
  16. F. J. Ville, T. Cwik, Y. Rahmat-Samii, and M. Manteghi, "A parallel electromagnetic genetic-algorithm optimization (EGO) application for patch antenna design," IEEE Trans. Antenna Propag. 52, 2424-2435 (2004). [CrossRef]
  17. D. J. Kern, D. H. Werner, and M. Lisovich, "Metaferrites using electromagnetic bandgap structures to synthesis metamaterial ferrites," IEEE Trans. Antenna Propag. 53, 1382-1389 (2005). [CrossRef]
  18. J. W. Rinne and P. Wiltzis, "Design of holographic structures using Genetic Algorithm," Opt. Express 14, 9909-9916 (2006). [CrossRef] [PubMed]
  19. J. Goh, I. Fushman, D. Englund, and J. Vuckovic, "Genetic optimization of photonic band structures," Opt. Express 15, 8218-8230 (2007). [CrossRef] [PubMed]
  20. P. Y. Chen, C. H. Chen, J. S. Wu, H. C. Wen, and W. P. Wang, "Optimal design of integrally gated CNT field-emission devices using a genetic algorithm," Nanotechnology 18, 395203-1-10 (2007).
  21. D. H. Kwon and D. H. Werner, "Low-index metamaterial designs in visible spectrum," Opt. Express 14, 9267-9272 (2007) [CrossRef]
  22. G. Mumcu, M. Valerio, K. Sertel, and J. L. Volakis, "Applications of the finite element method to designing composite metamaterials," International conference on electromagnetic in advanced applications, 818-821 (2007) [CrossRef]
  23. J. Holland, Adaptation in Nature and Artificial System (Ann Arbor: The University of Michigan Press, 1975). CST Microwave Studio 2006.b http://www.CST.com.
  24. X. Chen, Tomasz, M.  Grzegorczyk, B. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E 70, 016608-1-7 (2004). [CrossRef]
  25. http://www.python.org.
  26. F. Bilotti, L. Nucci, and L. Vegni, "An SRR based microwave absorber," Microwave Opt. Technol. Lett. 48, 2171-2175 (2006). [CrossRef]
  27. S. Enoch, G. Tayeb, F. Sabouroux, N. Guerin, and P. Vincent, "A Metamaterial for Directive Emission," Phys. Rev. Lett. 89, 213902-1-4 (2002). [CrossRef]
  28. D. Schurig, J. J. Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Appl. Phys. Lett. 88, 041109-1-3 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited