OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 12905–12918

Investigation of the variations in the water leaving polarized reflectance from the POLDER satellite data over two biogeochemical contrasted oceanic areas.

Hubert Loisel, Lucile Duforet, David Dessailly, Malik Chami, and Philippe Dubuisson  »View Author Affiliations

Optics Express, Vol. 16, Issue 17, pp. 12905-12918 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1018 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The biogeochemical characterization of marine particles suspended in sea water, is of fundamental importance in many areas of ocean science. Previous studies based on theoretical calculations and field measurements have demonstrated the importance of the use of the polarized light field in the retrieval of the suspended marine particles properties. However, because of the weakness of the water leaving polarized signal and of the limited number of appropriate spatial sensors, such measurements have never been exploited from space. Here we show that the marine polarized remote sensing reflectance, as detected from the POLarization and Directionality of the Earth’s Reflectances (POLDER) sensor, can be measured from space over bright waters and in absence of aerosols. This feasibility study is carried out over two oceanic areas characterized by different nature of the bulk particulate assemblage: the Barents sea during an intense coccolithophore bloom, and the Rio de la Plata estuary waters dominated by suspended sediments. The retrieved absolute values of the degree of polarization, P, its angular pattern, and its behavior with the scattering level are consistent with theory and field measurements. Radiative transfer simulations confirm the sensitivity of the POLDER-2 P values to the nature of the particulate assemblage. These preliminary results are very promising for the assessment of the bulk particle composition from remote sensing of the polarized signal, at least over highly scattering waters.

© 2008 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(260.5430) Physical optics : Polarization
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Atmospheric and oceanic optics

Original Manuscript: March 28, 2008
Revised Manuscript: May 22, 2008
Manuscript Accepted: June 12, 2008
Published: August 11, 2008

Virtual Issues
Vol. 3, Iss. 10 Virtual Journal for Biomedical Optics

Hubert Loisel, Lucile Duforet, David Dessailly, Malik Chami, and Phillippe Dubuisson, "Investigation of the variations in the water leaving polarized reflectance from the POLDER satellite data over two biogeochemical contrasted oceanic areas," Opt. Express 16, 12905-12918 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. IOCCG (2006), "Remote sensing of inherent optical properties: Fundamentals, tests of algorithms, and applications, in Reports of the International Ocean Colour Coordinating Group," Z. -P. Lee ed., Reports of the International Ocean-Colour Coordinating Group, No. 5, IOCCG, Dartmouth, Canada. (Available at http://www.IOCCG.org/groups/OCAG_data.html).
  2. D. Stramski, R. A. Reynolds, M. Kahru, and B. G. Mitchell, "Estimation of particulate organic carbon in the ocean from satellite remote sensing," Science 285, 239-242 (1999). [CrossRef] [PubMed]
  3. H. Loisel, E. Bosc, D. Stramski, K. Oubelker, and P.-Y. Deschamps, "Seasonal variability of the backscattering coefficients in the Mediterranean Sea based on Satellite SeaWIFS imagery," Geophys. Res. Lett. 28, 4203-4206 (2001). [CrossRef]
  4. M. Stramska and D. Stramski, "Variability of particulate organic carbon concentration in the north polar Atlantic based on ocean color observations with Sea-viewing Wide Field-of-view Sensor (SeaWiFS)," J. Geophys. Res. 110, C10018, doi:10.1029/2004JC002762 (2005). [CrossRef]
  5. H. Loisel, J. M. Nicolas, P.-Y. Deschamps, and R. Frouin, "Seasonal and inter-annual variability of the particulate matter in the global ocean," Geophys. Res. Lett. 29 (2002). [CrossRef]
  6. D. A. Siegel, S. Maritorena, N. B. Nelson, D. A. Hansell, and M. Lorenzi-Kayser, "Global distribution and dynamics of colored dissolved and detrital organic materials," J. Geophys. Res. 107, 3228, doi:10.1029/2001JC000965 (2002) [CrossRef]
  7. H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, "Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean," J. Geophys. Res 111, C09024, doi:10.1029/2005JC003367 (2006). [CrossRef]
  8. S. Alvain, C. Moulin, Y. Dandonneau, and F.-M. Bréon, "Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery," Deep-Sea Research Part I - Instruments and Methods 52, 1989-2004 (2005).
  9. T. K. Westberry and D. A. Siegel, "Spatial and temporal distribution of Trichodesmium blooms in the world's oceans," in Global Biogeochemical Cycles20, GB4016, doi:10.1029/2005GB002673 (2006)
  10. J. Uitz, H. Claustre, A. Morel, and A. S. Hooker, "Vertical distribution of phytoplankton communities in open ocean: an assessment based on surface chlorophyll," J. Geophys. Res. 111, C08005, doi:10.1029/2005JC003207 (2006). [CrossRef]
  11. A. M. Ciotti and A. Bricaud, "Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil," Limnol. Oceanogr. 4, 237-253 (2006). [CrossRef]
  12. A. Ivanoff, N. Jerlov, and T. H. Waterman, "A comparative study of irradiance, beam transmittance and scattering in the sea near Bermuda," Limnol. Oceanogr. 6, 129-148 (1961). [CrossRef]
  13. G. F. Beardsley, "Mueller scattering matrix of sea water," J. Opt. Soc. Am. 58, 52-57 (1968). [CrossRef]
  14. K. J. Voss and E. S. Fry, "Measurement of the Mueller matrix for ocean water," Appl. Opt. 23, 4427-4439 (1984). [CrossRef] [PubMed]
  15. M. Chami and D. McKee, "Determination of biogeochemical properties of marine particles using above water measurements of the degree of polarization at the Brewster angle," Opt. Express 15, 9494-9509 (2007). [CrossRef] [PubMed]
  16. G.W. Kattawar, "Polarization of light in the ocean," in Ocean Optics, R.W. Spinrad, K. L. Carder and M. J. Perry eds. (Oxford University Press, New York), pp. 202-225 (1994).
  17. P. C. Y. Chang, J. G. Walker, E. Jakmeman, and K. I. Hopcraft, "Polarization properties of light multiply scattered by non-spherical Rayleigh particles,"Wav. Rand. Med. 9, 415-426. (1999). [CrossRef]
  18. M. Chami, R. Santer, and E. Dilligeard, "Radiative transfer model for the computation of radiance and polarization in an ocean-atmosphere system: polarization properties of suspended matter for remote sensing," Appl. Opt. 40, 2398-2416 (2001). [CrossRef]
  19. J. Chowdhary, B. Cairns, and L. D. Travis, "Contribution of water-leaving radiances to multiangle, multispectral polarimetric observations over the open ocean: bio-optical model results for case 1 waters," Appl. Opt. 45, 5542-5567 (2006). [CrossRef] [PubMed]
  20. M. Chami, "Importance of the polarization in the retrieval of oceanic constituents from the remote sensing reflectance," J. Geophys. Res. 112 (2007). [CrossRef]
  21. M. Chami and M. Defoin-Platel, "Sensitivity of the retrieval of the inherent optical properties of marine particles in coastal waters to the directional variations and the polarization of the reflectance," J. Geophys. Res. 112, C05037, doi:10.1029/2006JC003758 (2007). [CrossRef]
  22. J. L. Deuzé, F.-M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, M. Marchand, F. Nadal, G. Perry, and D. Tanré, "Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements," J. Geophys. Res. 106,4913-4926 (2001). [CrossRef]
  23. J. Chowdhary, B. Cairns, and L. D. Travis, "Case studies of aerosol Retrievals over the ocean from multiangle, multispectral photopolarimetric remote sensing data," J. Atmos. Sci. 59, 383-397 (2002). [CrossRef]
  24. P. Goloub, M. Herman, M. Chepfer, J. Riedi, G. Brogniez, P. Couvert, and G. Sèze, "Cloud thermodynamical phase classification from the POLDER aspaceborn instrument," J. Geophys. Res. 105, 14747-14759 (2000). [CrossRef]
  25. T. Harmel and M. Chami, "Invariance of polarized reflectance measured at the top of atmosphere by PARASOL satellite instrument in the visible range with marine constituents in open ocean waters," Opt. Express 16, 6064-6080 (2008). [CrossRef] [PubMed]
  26. P. Y. Deschamps, F.-M. Breon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, and G. Seze, "The Polder Mission - Instrument Characteristics And Scientific Objectives," IEEE Trans. Geosci. Remote Sens. 32, 598-615 (1994). [CrossRef]
  27. J. E. Hansen and L. D. Travis, "Light scattering by planetary atmosphere," Space Sci. Rev. 16, 527-610 (1974). [CrossRef]
  28. A. Ivanoff and T. H. Waterman, "Factors, mainly depth and wavelength, affecting the degree of underwater light polarization," J. Mar. Res. 16, 283-307 (1958).
  29. T. H. Waterman, "Polarization patterns in submarine illumination," Science 120, 927-932 (1954). [CrossRef] [PubMed]
  30. T. H. Waterman, "Polarized light and plankton navigation," in Perspective in Marine Biology, A. A. Buzzati-Traverso, ed. (University of California Press, Berkley, 1958).
  31. A. Morel, "Diffusion de la lumière par les eaux de mer: Resultats expérimentaux et approche théorique," in Optics of the Sea AGARD Lecture Ser.61, (North Atlantic Treaty Org., Brussels) pp. 3.1.1-3.1.76 (1973).
  32. G. F. Beardsley, "Mueller scattering matrix of sea water," J. Opt. Soc. Am. 58, 52-57 (1968). [CrossRef]
  33. A. Lerner, E-H. Carynelisa, S. Nadav, and S. Shai, "On the Quest for the Scattering Mechanism that Determines the Polarization," presented at the Ocean Optics Meeting XVIII, Montreal, Canada (2007).
  34. D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, "Atmospheric correction of satellite ocean color imagery: the black pixel assumption," Appl. Opt. 39, 3582-3591 (2000). [CrossRef]
  35. K. G. Ruddick, V. De Cauwer, Y. J. Park, and G. Moore, "Seaborne measurements of near infrared water-leaving reflectance: the similarity spectrum for turbid waters," Limnol. Oceanogr. 51, 1167-1179 (2006). [CrossRef]
  36. L. Duforet, P. Dubuisson, and R. Frouin. 2007, "Importance and estimation of aerosol vertical structure in satellite ocean-color remote sensing," Appl. Opt. 46, 1107-1119 (2007). [CrossRef] [PubMed]
  37. C. Cox and W. Munk, "Measurements of the roughness of the sea surface from photographs of the sun??s glitter," J. Opt. Soc. Am. 44,838-850 (1954). [CrossRef]
  38. G. Kattawar and C. Adams, "Stokes vector calculations of the submarine light field in an atmosphere-ocean with scattering according to Rayleigh phase matrix," Limnol. Oceanogr. 34, 1463-1472 (1989). [CrossRef]
  39. H. R. Gordon and T. Du, "Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi," Limnol. Oceanogr. 46,1438-1454. (2001). [CrossRef]
  40. R. M. Pope and E. S. Fry, "Absorption spectrum (380-700 nm) of pure water.2. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997). [CrossRef]
  41. J. L. Laborde and G. J. Nagy, "Hydrography and sediments transport characteristics of the Río de la Plata a review," in Estuaries of South America, G. M. E. Perillo, M. C. Piccolo, and M. Pino Quivira, eds. (Springer, Berlin, 1999), pp. 133-159.
  42. D. Doxaran, N. Cherukuru, and S. J. Lavender, "Apparent and inherent optical properties of turbid estuarine waters: measurements, empirical quantification relationships, and modeling, " Appl. Opt. 45, 2310-2324 (2006). [CrossRef] [PubMed]
  43. "Analyse Mission de l??impact des non-conformités mesurées sur l??instrument POLDER," Rapport du groupe mission POLDER CNES-DPI /TL/96-004 (1996).
  44. W. M. Balch, K. Kilpatrick, P. M. Holligan, D. Harbour, and E. Fernandez, "The 1991 coccolithophore bloom in the central north Atlantic II: relating optics to coccolith concentration," Limnol. Oceanogr. 41,1684-1696 (1996). [CrossRef]
  45. T. J. Smyth, T. Tyrrell, and B. Tarrant, "Time series of coccolithophore activity in the Barents Sea, from twenty years of satellite imagery," Geophys. Res. Lett. 31, L11302, doi:10.1029/2004GL019735 (2004). [CrossRef]
  46. H. Siegel, T. Ohde, M. Gerth, G. Lavik, and T. Leipe, "Identification of coccolithophore blooms in the SE Atlantic Ocean off Namibia by satellites and in-situ methods," Cont. Shelf Res. 27, 258-274 (2007). [CrossRef]
  47. D. Stramski, A. Bricaud, and A. Morel, "Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community," Appl. Opt. 40, 2929-2945 (2001). [CrossRef]
  48. D. R. Lide, "Physical and optical properties of minerals," in CRC Handbook of Chemistry and Physics, 77th Edition, (CRC Press, Boca Raton, Fla, 1997.) pp. 4.130-4.136.
  49. L. Duforet, "Modelisation du rayonnement polarize dans une atmosphere absorbante et diffusante. Applications aux corrections atmosphériques au-dessus de l??océan," Ph.D. dissertation, 229 pp., Université du Littoral, France (2006).
  50. M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, "A model for estimating bulk refractive index from optical backscattering ratio and the implications for understanding particle composition in case I and case II waters," J. Geophys. Res. 106,14129-14142 (2001). [CrossRef]
  51. H. Loisel, X. Mériaux, J. F. Berthon, and A. Poteau, "Investigation of the optical backscattering to scattering ratio of marine particles in relation with their biogeochemical composition in the eastern English Channel and southern North Sea," Limnol. Oceanogr. 52, 739-752 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited