OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 17 — Aug. 18, 2008
  • pp: 12987–12994

Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides

Kazuhiro Ikeda, Robert E. Saperstein, Nikola Alic, and Yeshaiahu Fainman  »View Author Affiliations

Optics Express, Vol. 16, Issue 17, pp. 12987-12994 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (679 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce and present experimental evaluations of loss and nonlinear optical response in a waveguide and an optical resonator, both implemented with a silicon nitride/silicon dioxide material platform prepared by plasma-enhanced chemical vapor deposition with dual frequency reactors that significantly reduce the stress and the consequent loss of the devices. We measure a relatively small loss of ~4dB/cm in the waveguides. The fabricated ring resonators in add-drop and all-pass arrangements demonstrate quality factors of Q=12,900 and 35,600. The resonators are used to measure both the thermal and ultrafast Kerr nonlinearities. The measured thermal nonlinearity is larger than expected, which is attributed to slower heat dissipation in the plasma-deposited silicon dioxide film. The n2 for silicon nitride that is unknown in the literature is measured, for the first time, as 2.4×10-15cm2/W, which is 10 times larger than that for silicon dioxide.

© 2008 Optical Society of America

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(160.4330) Materials : Nonlinear optical materials
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Integrated Optics

Original Manuscript: June 3, 2008
Revised Manuscript: August 3, 2008
Manuscript Accepted: August 4, 2008
Published: August 11, 2008

Kazuhiro Ikeda, Robert E. Saperstein, Nikola Alic, and Yeshaiahu Fainman, "Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides," Opt. Express 16, 12987-12994 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004). [CrossRef] [PubMed]
  2. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005). [CrossRef]
  3. K. Ikeda and Y. Fainman, "Nonlinear Fabry-Perot resonator with a silicon photonic crystal waveguide," Opt. Lett. 31, 3486-3488 (2006). [CrossRef] [PubMed]
  4. K. Ikeda and Y. Fainman, "Material and structural criteria for ultra-fast Kerr nonlinear switching in optical resonant cavities," Solid-State Electron. 51, 1376-1380 (2007). [CrossRef]
  5. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, K. Yamada, T. Tsuchizawa, T. Watanabe and H. Fukuda, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007). [CrossRef]
  6. K. Ikeda, Y. Shen and Y. Fainman, "Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices," Opt. Express 15, 17761-17771 (2007). [CrossRef] [PubMed]
  7. Q. Lin, O. J. Painter and G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: modeling and applications," Opt. Express 15, 16604-16644 (2007). [CrossRef] [PubMed]
  8. W. Stutius and W. Streifer, "Silicon nitride films on silicon for optical waveguides," Appl. Opt. 16, 3218-3222 (1977). [CrossRef] [PubMed]
  9. C. H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky, and L. E. Katz, "Low loss Si3N4-SiO2 optical waveguides on Si," Appl. Opt. 26, 2621-2624, (1987). [CrossRef] [PubMed]
  10. N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui and L. Pavesi, "Comparison Among Various Si3N4 Waveguide Geometries Grown Within a CMOS Fabrication Pilot Line," J. Ligthtwave Technol. 22, 1734-1740 (2004). [CrossRef]
  11. T. Barwicz, M. A. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen and H. I. Smith, "Fabrication of Add-Drop Filters Based on Frequency-Matched Microring Resonators," J. Ligthtwave Technol. 24, 2207-2218 (2006). [CrossRef]
  12. E. P. van de Ven, I-W. Connick, and A. S. Harrus, "Advantages of dual frequency PECVD for deposition of ILD and passivation films," Proc. IEEE VLSI Multilevel Interconnection Conference (VMIC), 194-201 (1990) [CrossRef]
  13. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express,  13, 2678-2687 (2005). [CrossRef] [PubMed]
  14. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990). [CrossRef]
  15. C. A. Carter and J. M. Harris, "Comparison of models describing the thermal lens effect," Appl. Opt. 23, 476-481 (1984). [CrossRef] [PubMed]
  16. W. Henschel, Y. M. Georgiev and H. Kurz, "Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist," J. Vac. Sci. Technol. B 21, 2018-2025 (2003). [CrossRef]
  17. L. F. Stokes, M. Chodorow and H. J. Shaw, "All-single-mode fiber resonator," Opt. Lett. 7, 288- 290 (1982) [CrossRef] [PubMed]
  18. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen and O. A. Levring, "Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 mu m," Opt. Lett. 21, 1966-1968 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited